\[\boxed{\mathbf{1508}\mathbf{.}}\]
\[y = \sin x + 2\sqrt{2} \bullet \cos x;\ на\left\lbrack 0;\ \frac{\pi}{2} \right\rbrack:\]
\[y^{'}(x) = \left( \sin x \right)^{'} + 2\sqrt{2} \bullet \left( \cos x \right)^{'} =\]
\[= \cos x - 2\sqrt{2} \bullet \sin x.\]
\[Стационарные\ точки:\]
\[\cos x - 2\sqrt{2} \bullet \sin x = 0\ \ \ |\ :\cos x\]
\[1 - 2\sqrt{2} \bullet tg\ x = 0\]
\[2\sqrt{2} \bullet tg\ x = 1\]
\[tg\ x = \frac{\sqrt{2}}{4}.\]
\[\cos(x) = \sqrt{\frac{1}{tg^{2}\ x + 1}} =\]
\[= \sqrt{\frac{1}{\left( \frac{\sqrt{2}}{4} \right)^{2} + 1}} = \sqrt{\frac{1}{\frac{2}{16} + \frac{8}{8}}} =\]
\[= \sqrt{1\ :\frac{9}{8}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3};\]
\[\sin(x) = \sqrt{1 - \cos^{2}(x)} =\]
\[= \sqrt{1 - \frac{8}{9}} = \sqrt{\frac{9}{9} - \frac{8}{9}} = \sqrt{\frac{1}{9}} = \frac{1}{3}.\]
\[y(0) = \sin 0 + 2\sqrt{2} \bullet \cos 0 =\]
\[= 0 + 2\sqrt{2} \bullet 1 = 2\sqrt{2};\]
\[y(x) = \frac{1}{3} + 2\sqrt{2} \bullet \frac{2\sqrt{2}}{3} =\]
\[= \frac{1}{3} + \frac{4 \bullet 2}{3} = \frac{1 + 8}{3} = \frac{9}{3} = 3;\]
\[y\left( \frac{\pi}{2} \right) = \sin\frac{\pi}{2} + 2\sqrt{2} \bullet \cos\frac{\pi}{2} =\]
\[= 1 + 2\sqrt{2} \bullet 0 = 1.\]
\(Ответ:\ \ y_{\min} = 1;\ \ y_{\max} = 3.\)