\[\boxed{\mathbf{1507}\mathbf{.}}\]
\[y = 2\sin x + \cos{2x};\ на\left\lbrack 0;\ \frac{\pi}{2} \right\rbrack:\]
\[y^{'}(x) = 2\left( \sin x \right)^{'} + \left( \cos{2x} \right)^{'} =\]
\[= 2\cos x - 2\sin{2x}.\]
\[Стационарные\ точки:\]
\[2\cos x - 2\sin{2x} = 0\]
\[\cos x - \sin{2x} = 0\]
\[\cos x - 2\sin x \bullet \cos x = 0\]
\[\cos x \bullet \left( 1 - 2\sin x \right) = 0.\]
\[1)\ \cos x = 0;\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n.\]
\[2)\ 1 - 2\sin x = 0\]
\[1 = 2\sin x\]
\[\sin x = \frac{1}{2}\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n\]
\[x = ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[y(0) = 2\sin 0 + \cos(2 \bullet 0) =\]
\[= 2 \bullet 0 + \cos 0 = 0 + 1 = 1;\]
\[y\left( \frac{\pi}{6} \right) = 2\sin\frac{\pi}{6} + \cos\frac{2\pi}{6} =\]
\[= 2 \bullet \frac{1}{2} + \cos\frac{\pi}{3} = 1 + \frac{1}{2} = 1,5;\]
\[y\left( \frac{\pi}{2} \right) = 2\sin\frac{\pi}{2} + \cos\frac{2\pi}{2} =\]
\[= 2 \bullet 1 + \cos\pi = 2 - 1 = 1.\]
\[Ответ:\ \ y_{\min} = 1;\ \ y_{\max} = 1,5.\]