\[\boxed{\mathbf{1482}\mathbf{.}}\]
\[1)\ y = 3^{x} + 1\]
\[y( - x) = 3^{- x} + 1 = \frac{1}{3^{x}} + 1;\]
\[D(x) = ( - \infty;\ + \infty);\]
\[\lim_{x \rightarrow \infty}\left( 3^{x} + 1 \right) = 0 + 1 = 1;\]
\[y^{'}(x) = \left( 3^{x} \right)^{'} + (1)^{'} =\]
\[= 3^{x} \bullet \ln 3 > 0;\]
\[Функция\ возрастает\ на\ всей\ \]
\[числовой\ прямой.\]
\[E(y) = (1;\ + \infty);\]
\[С\ осью\ Oy\ (x = 0):\]
\[y = 3^{0} + 1 = 1 + 1 = 2.\]
\[2)\ y = \log_{2}(x + 1)\]
\[Ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \log_{2}( - x + 1) =\]
\[= \log_{2}(1 - x);\]
\[x + 1 > 0\]
\[x > - 1\]
\[D(x) = ( - 1;\ + \infty).\]
\[\lim_{x \rightarrow \infty}\left( \log_{2}(x + 1) \right) - не\ \]
\[существует;\]
\[y^{'}(x) = \left( \log_{2}(x + 1) \right)^{'} =\]
\[= \frac{1}{(x + 1) \bullet \ln 2};\]
\[Промежуток\ возрастания:\]
\[x + 1 > 0\]
\[x > - 1.\]
\[E(y) = ( - \infty;\ + \infty);\]
\[С\ осью\ Oy\ (x = 0):\]
\[y = \log_{2}(0 + 1) = \log_{2}1 = 0.\]
\[3)\ y = \log_{\frac{1}{3}}(x - 1);\]
\[Ни\ четная,\ ни\ нечетная:\]
\[y( - x) = \log_{\frac{1}{3}}( - x - 1);\]
\[x - 1 > 0\]
\[x > 1\]
\[D(x) = (1;\ + \infty).\]
\[\lim_{x \rightarrow \infty}\left( \log_{\frac{1}{3}}(x - 1) \right) - не\ \]
\[существует.\]
\[y^{'}(x) = \left( \log_{\frac{1}{3}}(x - 1) \right)^{'} =\]
\[= \frac{1}{(x - 1) \bullet \ln\frac{1}{3}}.\]
\[(x - 1) \bullet \ln\frac{1}{3} < 0\]
\[x - 1 > 0\]
\[x > 1.\]
\[E(y) = ( - \infty;\ + \infty);\]
\[С\ осью\ Ox\ (y = 0):\]
\[\log_{\frac{1}{3}}(x - 1) = 0\]
\[x - 1 = 1\]
\[x = 2.\]