\[\boxed{\mathbf{1469}\mathbf{.}}\]
\[1)\ y = x^{2};\text{\ \ }y = x + 6:\]
\[x^{2} = x + 6\]
\[x^{2} - x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\]
\[x_{2} = \frac{1 + 5}{2} = 3.\]
\[Ответ:\ \ пересекаются.\]
\[2)\ y = \frac{3}{x};\ \ y = 4(x + 1):\]
\[\frac{3}{x} = 4(x + 1)\ \ \ \ \ | \bullet x\]
\[3 = 4x(x + 1)\]
\[4x^{2} + 4x - 3 = 0\]
\[D = 16 + 48 = 64\]
\[x_{1} = \frac{- 4 - 8}{2 \bullet 4} = - \frac{12}{8} = - 1,5;\]
\[x_{2} = \frac{- 4 + 8}{2 \bullet 4} = \frac{4}{8} = \frac{1}{2}.\]
\[Ответ:\ \ пересекаются.\]
\[3)\ y = \frac{1}{8}x^{2};\text{\ \ }y = \frac{1}{x}:\]
\[\frac{1}{8}x^{2} = \frac{1}{x}\ \ \ \ \ | \bullet 8x\]
\[x^{3} = 8\]
\[x = \sqrt[3]{8} = 2.\]
\[Ответ:\ \ пересекаются.\]
\[4)\ y = 2x - 1;\text{\ \ }y = \frac{1}{x}:\]
\[2x - 1 = \frac{1}{x}\ \ \ \ \ | \bullet x\]
\[2x^{2} - x - 1 = 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{1}{2};\]
\[x_{2} = \frac{1 + 3}{2 \bullet 2} = 1.\]
\[Ответ:\ \ пересекаются.\]