\[\boxed{\mathbf{1468}\mathbf{.}}\]
\[y = - 2x^{2} + 3x + 2\]
\[1)\ \ y(x) < 0:\]
\[- 2x^{2} + 3x + 2 < 0\]
\[2x^{2} - 3x - 2 > 0\]
\[D = 9 + 16 = 25\]
\[x_{1} = \frac{3 - 5}{2 \bullet 2} = - \frac{1}{2};\]
\[x_{2} = \frac{3 + 5}{2 \bullet 2} = 2;\]
\[\left( x + \frac{1}{2} \right)(x - 2) > 0\]
\[x < - \frac{1}{2}\text{\ \ }и\ \ x > 2.\]
\[2)\ Убывает\ на\ \lbrack 1;\ 2\rbrack:\]
\[y^{'}(x) = - 2\left( x^{2} \right)^{'} + (3x + 2)^{'} =\]
\[= - 2 \bullet 2x + 3 = 3 - 4x;\]
\[3 - 4x \leq 0\]
\[4x \geq 3\]
\[x \geq \frac{3}{4}.\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\ Наибольшее\ значение:\]
\[x = \frac{3}{4} - точка\ максимума;\]
\[y\left( \frac{3}{4} \right) = - 2 \bullet \frac{9}{16} + 3 \bullet \frac{3}{4} + 2 =\]
\[= - \frac{9}{8} + \frac{18}{8} + 2 = 1\frac{1}{8} + 2 = 3\frac{1}{8}.\]
\[4)\ Ниже\ графика\ функции\ \]
\[y = 3x + 2:\]
\[- 2x^{2} + 3x + 2 < 3x + 2\]
\[- 2x^{2} < 0\]
\[x^{2} > 0;\]
\[x \neq 0.\]
\[5)\ Уравнение\ касательной\ к\ \]
\[y = 3:\]
\[3 = - 2x^{2} + 3x + 2\]
\[2x^{2} - 3x + 1 = 0\]
\[D = 9 - 8 = 1\]
\[x_{1} = \frac{3 - 1}{2 \bullet 2} = \frac{1}{2};\]
\[x_{2} = \frac{3 + 1}{2 \bullet 2} = 1.\]
\[1)\ f^{'}(x) = - 2\left( x^{2} \right)^{'} + (3x + 2)^{'} =\]
\[= - 2 \bullet 2x + 3 = 3 - 4x;\]
\[f^{'}\left( \frac{1}{2} \right) = 3 - 4 \bullet \frac{1}{2} = 3 - 2 = 1;\]
\[y = 3 + 1\left( x - \frac{1}{2} \right) =\]
\[= 3 + x - \frac{1}{2} = 2,5 + x.\]
\[2)\ f^{'}(1) = 3 - 4 \bullet 1 = 3 - 4 = - 1;\]
\[y = 3 - 1(x - 1) = 3 - x + 1 =\]
\[= 4 - x.\]