\[\boxed{\mathbf{1450}\mathbf{.}}\]
\[x - первый\ член\ геометрической\ \]
\[прогрессии;\ \]
\[q - знаменатель;\]
\[d - разность\ арифметической\]
\[прогрессии:\]
\[a_{1} = b_{5} = xq^{4};\]
\[a_{2} = b_{8} = xq^{7};\]
\[a_{10} = b_{11} = xq^{10};\]
\[d = a_{2} - a_{1} = xq^{7} - xq^{4}.\]
\[a_{10} = a_{1} + 9d\]
\[xq^{10} = xq^{4} + 9xq^{7} - 9xq^{4}\]
\[xq^{10} - 9xq^{7} + 8xq^{4} = 0\ \ \ \ \ |\ :xq^{4}\]
\[q^{6} - 9q^{3} + 8 = 0.\]
\[Пусть\ y = q^{3}:\]
\[y^{2} - 9y + 8 = 0\]
\[D = 81 - 32 = 49\]
\[y_{1} = \frac{9 - 7}{2} = 1;\ y_{2} = \frac{9 + 7}{2} = 8;\]
\[q_{1} = \sqrt[3]{1} = 1;\text{\ \ }q_{2} = \sqrt[3]{8} = 2.\]
\[S_{5} = \frac{x\left( q^{5} - 1 \right)}{q - 1} = 62\]
\[x\left( q^{5} - 1 \right) = 62(q - 1)\]
\[x = \frac{62(q - 1)}{q^{5} - 1};\]
\[x_{2} = \frac{62(2 - 1)}{\left( 2^{5} - 1 \right)} = \frac{62}{32 - 1} = \frac{62}{31} = 2.\]
\[q = 1 - \ все\ числа\ одинаковые:\]
\[S_{5} = 5x_{1} = 62\]
\[x_{1} = 12,4.\]
\[Ответ:\ \ 12,4\ \ или\ \ 2.\]