\[\boxed{\mathbf{1447}\mathbf{.}}\]
\[b(n) - геометрическая\ \]
\[прогрессия;\]
\[q - знаменатель.\]
\[1)\ b_{3} - b_{2} = 9\]
\[b_{1}q^{2} - b_{1} = 9\]
\[b_{1} \bullet \left( q^{2} - 1 \right) = 9\]
\[b_{1} = \frac{9}{q^{2} - 1}.\]
\[2)\ b_{2} - b_{4} = 18\]
\[b_{1}q - b_{1}q^{3} = 18\]
\[b_{1} \bullet \left( q - q^{3} \right) = 18\]
\[b_{1} = \frac{18}{q - q^{3}}.\]
\[Составим\ уравнение:\]
\[\frac{9}{q^{2} - 1} = \frac{18}{q - q^{3}};\ \ q \neq \pm 1\]
\[9\left( q - q^{3} \right) = 18\left( q^{2} - 1 \right)\]
\[q - q^{3} = 2q^{2} - 2\]
\[q^{3} + 2q^{2} - q - 2 = 0\]
\[q^{2} \bullet (q + 2) - (q + 2) = 0\]
\[(q + 2)\left( q^{2} - 1 \right) = 0\]
\[q_{1} = - 2;\ \ \ q_{2} = \pm 1.\]
\[q = - 2:\]
\[b_{1} = \frac{9}{( - 2)^{2} - 1} = \frac{9}{4 - 1} = \frac{9}{3} = 3;\]
\[b_{2} = 3 \bullet ( - 2) = - 6;\]
\[b_{3} = - 6 \bullet ( - 2) = 12;\]
\[b_{4} = 12 \bullet ( - 2) = - 24.\]
\[Ответ:\ \ 3;\ \ - 6;\ \ 12;\ \ - 24.\]