\[\boxed{\mathbf{1409}\mathbf{.}}\]
\[1)\ \sqrt{\lg x} < \frac{1}{2}\]
\[\lg x < \frac{1}{4}\]
\[\lg x < \lg 10^{\frac{1}{4}}\]
\[x < 10^{\frac{1}{4}}.\]
\[Имеет\ смысл\ при:\]
\[\lg x \geq 0\]
\[\lg x \geq \lg 10^{0}\]
\[x > 10^{0}\]
\[x > 1.\]
\[Ответ:\ \ 1 < x < 10^{\frac{1}{4}}.\]
\[2)\log_{\frac{1}{2}}x < \log_{\frac{1}{2}}(2x + 6) + 2\]
\[\log_{\frac{1}{2}}x - \log_{\frac{1}{2}}(2x + 6) < 2\]
\[\log_{\frac{1}{2}}\frac{x}{2x + 6} < \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{2}\]
\[\frac{x}{2x + 6} > \frac{1}{4}\ \ \ \ \ | \bullet 4(2x + 6)^{2}\]
\[4x \bullet (2x + 6) > (2x + 6)^{2}\]
\[8x^{2} + 24x > 4x^{2} + 24x + 36\]
\[4x^{2} > 36\]
\[x^{2} > 9\]
\[x < - 3\ \ и\ \ x > 3.\]
\[Имеет\ смысл\ при:\]
\[x > 0\]
\[2x + 6 > 0\]
\[x > - 3.\]
\[Ответ:\ \ x > 3.\]