\[\boxed{\mathbf{1360}\mathbf{.}}\]
\[1)\ z^{2} + 4z + 19 = 0\]
\[D = 16 - 76 = - 60 = - 15 \bullet 4\]
\[z = \frac{- 4 \pm \sqrt{- 60}}{2} = \frac{- 4 \pm 2\sqrt{- 15}}{2} =\]
\[= - 2 \pm \sqrt{- 15} = - 2 \pm i\sqrt{15}.\]
\[Ответ:\ \ z = - 2 \pm i\sqrt{15}.\]
\[2)\ z^{2} - 2z + 3 = 0\]
\[D = 4 - 12 = - 8 = - 2 \bullet 4\]
\[z = \frac{2 \pm \sqrt{- 8}}{2} = \frac{2 \pm 2\sqrt{- 2}}{2} =\]
\[= 1 \pm \sqrt{- 2} = 1 \pm i\sqrt{2}.\]
\[Ответ:\ \ z = 1 \pm i\sqrt{2}.\]