\[\boxed{\mathbf{1340}\mathbf{.}}\]
\[\left| x^{2} - 3x - 6 \right| = 2x\]
\[x^{2} - 3x - 6 \geq 0\]
\[D = 9 + 24 = 33\]
\[x_{1} = \frac{3 - \sqrt{33}}{2} \approx \frac{3 - 5,7}{2} \approx\]
\[\approx - \frac{2,7}{2} \approx - 1,3;\]
\[x_{2} = \frac{3 + \sqrt{33}}{2} \approx \frac{3 + 5,7}{2} \approx\]
\[\approx \frac{8,7}{2} \approx 4,3;\]
\[(x + 1,3)(x - 4,3) \geq 0\]
\[x \leq - 1,3;\ \text{\ \ }x \geq 4,3.\ \]
\[x \leq - 1,3\ \ и\ \ x \geq 4,3:\]
\[x^{2} - 3x - 6 = 2x\]
\[x^{2} - 5x - 6 = 0\]
\[D = 25 + 24 = 49\]
\[x_{1} = \frac{5 - 7}{2} = - 1;\]
\[x_{2} = \frac{5 + 7}{2} = 6.\]
\[- 1,3 < x < 4,3:\]
\[- \left( x^{2} - 3x - 6 \right) = 2x\]
\[- x^{2} + 3x + 6 - 2x = 0\]
\[x^{2} - x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{1 - 5}{2} = - 2;\]
\[x_{2} = \frac{1 + 5}{2} = 3.\]
\[Ответ:\ \ x = 3.\]