\[\boxed{\mathbf{1339}\mathbf{.}}\]
\[1)\ |6 - 2x| = 3x + 1\]
\[6 - 2x \geq 0\]
\[2x \leq 6\]
\[x \leq 3.\]
\[x \leq 3:\]
\[6 - 2x = 3x + 1\]
\[- 5x = - 5\]
\[x = 1.\]
\[x > 3:\]
\[- (6 - 2x) = 3x + 1\]
\[- 6 + 2x = 3x + 1\]
\[- x = 7\]
\[x = - 7.\]
\[Ответ:\ \ x = 1.\]
\[2)\ 2|x - 2| = |x| - 1\]
\[x - 2 \geq 0\]
\[x \geq 2;\]
\[x \geq 0.\]
\[x \geq 2:\]
\[2(x - 2) = x - 1\]
\[2x - 4 = x - 1\]
\[2x - x = - 1 + 4\]
\[x = 3.\]
\[0 \leq x < 2:\]
\[- 2(x - 2) = x - 1\]
\[- 2x + 4 = x - 1\]
\[- 3x = - 5\]
\[x = \frac{5}{3} = 1\frac{2}{3}.\]
\[x < 0:\]
\[- 2(x - 2) = - x - 1\]
\[- 2x + 4 = - x - 1\]
\[- x = - 5\]
\[x = 5.\]
\[Ответ:\ \ x_{1} = 3;\ \ x_{2} = 1\frac{2}{3}.\]