\[\boxed{\mathbf{1331}\mathbf{.}}\]
\[\frac{2}{x^{2} - x + 1} - \frac{1}{x + 1} = \frac{2x - 1}{x^{3} + 1}\]
\[2(x + 1) - \left( x^{2} - x + 1 \right) = 2x - 1\]
\[2x + 2 - x^{2} + x - 1 - 2x + 1 = 0\]
\[- x^{2} + x + 2 = 0\]
\[x^{2} - x - 2 = 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2} = - 1;\]
\[x_{2} = \frac{1 + 3}{2} = .\]
\[ОДЗ:\]
\[1)\ x + 1 \neq 0\]
\[x \neq - 1.\]
\[2)\ x^{2} - x + 1 \neq 0\]
\[D = 1^{2} - 4 = - 3 < 0\]
\[корней\ нет.\]
\[Ответ:\ \ x = 2.\]