\[\boxed{\mathbf{1330}\mathbf{.}}\]
\[1)\ \frac{3x - 1}{x + 2} - \frac{7}{2 + x} = \frac{7x^{2} - 28}{x^{2} - 4} + \frac{18}{2 - x}\]
\[4x^{2} - 4x - 80 = 0\]
\[x^{2} - x - 20 = 0\]
\[D = 1 + 80 = 81\]
\[x_{1} = \frac{1 - 9}{2} = - \frac{8}{2} = - 4;\]
\[x_{2} = \frac{1 + 9}{2} = \frac{10}{2} = 5.\]
\[Ответ:\ - 4;\ 5.\]
\[2)\ \frac{x + 1}{x + 3} - \frac{12}{x^{2} - 9} = \frac{2x - 1}{3 - x}\]
\[x^{2} - 2x - 15 = - 2x^{2} - 5x + 3\]
\[3x^{2} + 3x - 18 = 0\]
\[x^{2} + x - 6 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - \frac{6}{2} = - 3;\]
\[x_{2} = \frac{- 1 + 5}{2} = \frac{4}{2} = 2.\]
\[ОДЗ:\]
\[(x - 3)(x + 3) \neq 0\]
\[x_{1} \neq 3\ \ и\ \ x_{2} \neq - 3.\]
\[Ответ:\ \ x = 2.\]