\[\boxed{\mathbf{1315}\mathbf{.}}\]
\[1)\ \frac{2}{\text{tg}\frac{a}{2} + ctg\frac{a}{2}} = \sin a\]
\[\frac{2}{\text{tg}\frac{a}{2} + ctg\frac{a}{2}} = \frac{2}{\frac{\sin\frac{a}{2}}{\cos\frac{a}{2}} + \frac{\cos\frac{a}{2}}{\sin\frac{a}{2}}} =\]
\[= 2\ :\frac{\sin^{2}\frac{a}{2} + \cos^{2}\frac{a}{2}}{\cos\frac{a}{2} \bullet \sin\frac{a}{2}} =\]
\[= \frac{2\sin\frac{a}{2} \bullet \cos\frac{a}{2}}{\sin^{2}\frac{a}{2} + \cos^{2}\frac{a}{2}} =\]
\[= \frac{\sin a}{1} = \sin a.\]
\[Тождество\ доказано.\]
\[2)\ \frac{ctg\ a - tg\ a}{ctg\ a + tg\ a} = \cos{2a}\]
\[\frac{ctg\ a - tg\ a}{ctg\ a + tg\ a} = \frac{\frac{\cos a}{\sin a} - \frac{\sin a}{\cos a}}{\frac{\cos a}{\sin a} + \frac{\sin a}{\cos a}} =\]
\[= \frac{\cos^{2}a - \sin^{2}a}{\sin a \bullet \cos a}\ :\frac{\cos^{2}a + \sin^{2}a}{\sin a \bullet \cos a} =\]
\[= \frac{\cos^{2}a - \sin^{2}a}{\cos^{2}a + \sin^{2}a} = \frac{\cos{2a}}{1} =\]
\[= \cos{2a}.\]
\[Тождество\ доказано.\]