\[\boxed{\mathbf{1265}\mathbf{.}}\]
\[1)\ a = 6\ см.\]
\[\textbf{а)}\ p = \frac{1}{2}(a + a + a) =\]
\[= \frac{1}{2}(6 + 6 + 6) = \frac{1}{2} \bullet 18 = 9\ (см).\]
\[\textbf{б)}\ S = \frac{1}{2} \bullet a \bullet a \bullet \sin{60{^\circ}} =\]
\[= \frac{1}{2} \bullet 6 \bullet 6 \bullet \frac{\sqrt{3}}{2} = 3 \bullet 3 \bullet \sqrt{3} =\]
\[= 9\sqrt{3}\ \left( см^{2} \right).\]
\[S = p \bullet r:\]
\[r = \frac{S}{p} = \frac{9\sqrt{3}}{9} = \sqrt{3}\ (см).\]
\[\textbf{в)}\ d = 2r = 2\sqrt{3}\ (см).\]
\[Ответ:\ \ 2\sqrt{3}\ см.\]
\[2)\ a = 4\ см.\]
\[\mathrm{\Delta}\ в\ наконечнике -\]
\[равнобедренный,a - высота:\]
\[\text{tg}\frac{\alpha}{2} = \frac{4,5\text{/}2}{a} = \frac{2,25}{4} = 0,5625.\]
\[\alpha = 2 \bullet arctg\frac{a}{2} = 2 \bullet arctg\ 0,5625 \approx\]
\[\approx 2 \bullet 29,36{^\circ} \approx 58,72{^\circ}.\]
\[Ответ:\ \ 2\ arctg\ 0,5625 \approx 58,72{^\circ}.\]