\[\boxed{\mathbf{1260}\mathbf{.}}\]
\[1)\ Может:\]
\[\left( 2 - \sqrt{2} \right) + \left( 2 + \sqrt{2} \right) = 4;\ \]
\[0,221443\ldots + 0,223001\ldots =\]
\[= 0,444444\ldots = 0,(4).\]
\[2)\ Может:\]
\[\sqrt{3} \bullet \sqrt{3} = 3;\]
\[\sqrt{2} \bullet \sqrt{8} = \sqrt{16} = 4.\]
\[3)\ Может:\]
\[\frac{\left( 2 - \sqrt{2} \right) + \left( 2 + \sqrt{2} \right)}{\left( 2 - \sqrt{2} \right) \bullet \left( 2 + \sqrt{2} \right)} =\]
\[= \frac{4}{4 - 2} = 2;\]
\[\frac{0,11212122\ldots + 0,22121211\ldots}{0,11212122\ldots \bullet 0,22121211\ldots} =\]
\[= \frac{0,33333333\ldots}{0,22222222\ldots} = \frac{0,(3)}{0,(2)} =\]
\[= \frac{1}{3}\ :\frac{2}{9} = \frac{3}{2}.\]