\[\boxed{\mathbf{1067}\mathbf{.}}\]
\[1)\ \frac{P_{n}}{P_{n + 1}} = \frac{1}{4}\]
\[\frac{n!}{(n + 1)!} = \frac{1}{4}\]
\[\frac{n!}{(n + 1) \bullet n!} = \frac{1}{4}\]
\[\frac{1}{n + 1} = \frac{1}{4}\]
\[n + 1 = 4\ \]
\[n = 3\]
\[Ответ:\ \ n = 3.\]
\[2)\ \frac{P_{n + 2}}{P_{n + 1}} = 5\]
\[\frac{(n + 2)!}{(n + 1)!} = 5\]
\[\frac{(n + 2) \bullet (n + 1)!}{(n + 1)!} = 5\]
\[n + 2 = 5\]
\[n = 3\]
\[Ответ:\ \ n = 3.\]
\[3)\ \frac{P_{n}}{P_{n - 2}} = 20\]
\[\frac{n!}{(n - 2)!} = 20\]
\[\frac{n \bullet (n - 1) \bullet (n - 2)!}{(n - 2)!} = 20\]
\[n^{2} - n - 20 = 0\]
\[D = 1^{2} + 4 \bullet 20 = 1 + 80 = 81\]
\[n_{1} = \frac{1 - 9}{2} = - 4\ \ и\ \ \]
\[n_{2} = \frac{1 + 9}{2} = 5.\]
\[Ответ:\ \ n = 5.\]
\[4)\ \frac{P_{n - 1}}{P_{n + 1}} = \frac{1}{12}\]
\[\frac{(n - 1)!}{(n + 1)!} = \frac{1}{12}\]
\[\frac{(n - 1)!}{(n + 1) \bullet n \bullet (n - 1)!} = \frac{1}{12}\]
\[\frac{1}{n^{2} + n} = \frac{1}{12}\]
\[n^{2} + n - 12 = 0\]
\[D = 1^{2} + 4 \bullet 12 = 1 + 48 = 49\]
\[n_{1} = \frac{- 1 - 7}{2} = - 4\ \ и\ \ \]
\[n_{2} = \frac{- 1 + 7}{2} = 3.\]
\[Ответ:\ \ n = 3.\]