\[\boxed{\mathbf{1066}\mathbf{.}}\]
\[1)\ \frac{P_{n + 1}}{P_{n}} = \frac{(n + 1)!}{n!} =\]
\[= \frac{(n + 1) \bullet n!}{n!} = n + 1.\]
\[2)\ \frac{P_{n + 2}}{P_{n + 1}} = \frac{(n + 2)!}{(n + 1)!} =\]
\[= \frac{(n + 2) \bullet (n + 1)!}{(n + 1)!} = n + 2.\]
\[3)\ \frac{m! \bullet (m + 1)}{(m + 2)!} =\]
\[= \frac{(m + 1)!}{(m + 2) \bullet (m + 1)!} = \frac{1}{m + 2}.\]
\[4)\ \frac{(m + 3)!}{(m + 1)! \bullet (m + 2)} =\]
\[= \frac{(m + 3) \bullet (m + 2)!}{(m + 2)!} = m + 3.\]