\[\boxed{\mathbf{1033}\mathbf{.}}\]
\[1)\ f(x) = \cos x;\]
\[F(x) = \sin x + C.\]
\[M(0;\ - 2):\]
\[- 2 = \sin 0 + C\]
\[- 2 = 0 + C\]
\[C = - 2.\]
\[Ответ:\ \ F(x) = \sin x - 2.\]
\[2)\ f(x) = \sin x;\]
\[F(x) = - \cos x + C.\]
\[M( - \pi;\ 0):\]
\[0 = - \cos( - \pi) + C\]
\[0 = - \cos\pi + C\]
\[0 = 1 + C\ \]
\[C = - 1.\]
\[Ответ:\ \ F(x) = - \cos x - 1.\]
\[3)\ f(x) = \frac{1}{\sqrt{x}} = x^{- \frac{1}{2}}\]
\[F(x) = x^{\frac{1}{2}}\ :\frac{1}{2} = 2\sqrt{x} + C.\]
\[M(4;\ 5):\]
\[5 = 2\sqrt{4} + C\]
\[5 = 2 \bullet 2 + C\]
\[5 = 4 + C\ \]
\[C = 1.\]
\[Ответ:\ \ F(x) = 2\sqrt{x} + 1.\]
\[4)\ f(x) = e^{x};\]
\[F(x) = e^{x} + C.\]
\[M(0;\ 2):\]
\[2 = e^{0} + C\]
\[2 = 1 + C\ \]
\[C = 1.\]
\[Ответ:\ \ F(x) = e^{x} + 1.\]
\[5)\ f(x) = 3x^{2} + 1;\]
\[F(x) = 3 \bullet \frac{x^{3}}{3} + 1 \bullet \frac{x^{1}}{1} =\]
\[= x^{3} + x + C.\]
\[M(1;\ - 2):\]
\[- 2 = 1^{3} + 1 + C\]
\[- 2 = 2 + C\]
\[C = - 4.\]
\[Ответ:\ \ F(x) = x^{3} + x - 4.\]
\[6)\ f(x) = 2 - 2x;\]
\[F(x) = 2 \bullet \frac{x^{1}}{1} - 2 \bullet \frac{x^{2}}{2} =\]
\[= 2x - x^{2} + C.\]
\[M(2;\ 3):\]
\[3 = 2 \bullet 2 - 2^{2} + C\]
\[3 = 4 - 4 + C\ \]
\[C = 3.\]
\[Ответ:\ \ F(x) = 2x - x^{2} + 3.\]