\[\boxed{\mathbf{1023}\mathbf{.}}\]
\[1)\ y = x^{2} + 10;\ \ \ \ \ (0;\ 1);\]
\[Уравнениие\ касательной:\]
\[y^{'}(a) = \left( x^{2} \right)^{'} + (10)^{'} =\]
\[= 2x + 0 = 2x = 2a;\]
\[y(a) = a^{2} + 10;\]
\[y = a^{2} + 10 + 2a \bullet (x - a) =\]
\[= a^{2} + 10 + 2ax - 2a^{2} =\]
\[= - a^{2} + 2ax + 10.\]
\[- a^{2} + 2a \bullet 0 + 10 = 1\]
\[- a^{2} = - 9\]
\[a^{2} = 9\ \]
\[a = \pm 3.\]
\[1)\ y =\]
\[= - ( - 3)^{2} + 2x \bullet ( - 3) + 10 =\]
\[= - 9 - 6x + 10 = 1 - 6x\]
\[x^{2} + 10 = 1 - 6x\]
\[x^{2} + 6x + 9 = 0\]
\[(x + 3)^{2} = 0\ \]
\[x = - 3.\]
\[2)\ y = - 3^{2} + 2 \bullet 3x + 10 =\]
\[= - 9 + 6x + 10 = 1 + 6x\]
\[x^{2} + 10 = 1 + 6x\]
\[x^{2} - 6x + 9 = 0\]
\[(x - 3)^{2} = 0\]
\[x = 3.\]
\[Пересечение\ касательных:\]
\[1 - 6x = 1 + 6x\]
\[1 - 1 = 6x + 6x\]
\[0 = 12x\ \]
\[x = 0.\]
\[= 9 - 27 + 27 + 9 - 27 + 27 =\]
\[= 9 + 9 = 18;\]
\[Ответ:\ \ 18.\]
\[2)\ y = \frac{1}{x};\ \ \ x = 1;\ \ x = 2;\]
\[Уравнениие\ касательной:\]
\[y^{'}(x) = \left( \frac{1}{x} \right)^{'} = - \frac{1}{x^{2}}\]
\[y^{'}(2) = - \frac{1}{2^{2}} = - \frac{1}{4}\]
\[y(2) = \frac{1}{2}\]
\[y = \frac{1}{2} - \frac{1}{4} \bullet (x - 2) =\]
\[= \frac{1}{2} - \frac{x}{4} + \frac{1}{2} = 1 - \frac{x}{4}.\]
\[Точки\ пересечения\ функций:\]
\[\frac{1}{x} = 1 - \frac{x}{4}\]
\[1 = x - \frac{x^{2}}{4}\]
\[4 = 4x - x^{2}\]
\[x^{2} - 4x + 4 = 0\]
\[(x - 2)^{2} = 0\ \]
\[x = 2.\]
\[S = \int_{1}^{2}{\left( \frac{1}{x} - \left( 1 - \frac{x}{4} \right) \right)\text{\ dx}} =\]
\[= \left. \ \left( \ln x - x + \frac{x^{2}}{2}\ :4 \right) \right|_{1}^{2} =\]
\[= \left. \ \left( \ln x - x + \frac{x^{2}}{8} \right) \right|_{1}^{2} =\]
\[= \ln 2 - 2 + \frac{2^{2}}{8} - \ln 1 + 1 - \frac{1^{2}}{8} =\]
\[= \ln 2 - 2 + \frac{4}{8} - 0 + 1 - \frac{1}{8} =\]
\[= \ln 2 - 1 + \frac{3}{8} = \ln 2 - \frac{5}{8}.\]
\[Ответ:\ \ \ln 2 - \frac{5}{8}.\]