Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 978

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 978

\[\boxed{\mathbf{978}\mathbf{.}}\]

\[\text{\ a\ }и\ h - длины\ сторон\ осевого\ \]

\[сечения\ цилиндра:\]

\[R = \frac{a}{2};\ \ \]

\[p = 2a + 2h \rightarrow \ h = \frac{p}{2} - a;\]

\[V(a) = S_{осн} \bullet h = \pi R^{2} \bullet h =\]

\[= \pi \bullet \left( \frac{a}{2} \right)^{2} \bullet \left( \frac{p}{2} - a \right) =\]

\[= \frac{\pi a^{2}}{4} \bullet \left( \frac{p}{2} - a \right).\]

\[V^{'}(a) =\]

\[= \frac{\pi}{4} \bullet 2a \bullet \left( \frac{p}{2} - a \right) + \frac{\pi a^{2}}{4} \bullet ( - 1) =\]

\[= \frac{\pi ap - 2\pi a^{2} - \pi a^{2}}{4} =\]

\[= \pi \bullet \frac{ap - 3a^{2}}{4}.\]

\[Промежуток\ возрастания:\]

\[ap - 3a^{2} > 0\]

\[a \bullet (p - 3a) > 0\]

\[a \bullet (3a - p) < 0\]

\[0 < a < \frac{p}{3}.\]

\[a = \frac{p}{3} - точка\ максимума;\]

\[V\left( \frac{p}{3} \right) = \frac{\pi}{4} \bullet \frac{p^{2}}{9} \bullet \left( \frac{p}{2} - \frac{p}{3} \right) =\]

\[= \frac{\pi p^{2}}{36} \bullet \frac{p}{6} = \frac{\pi p^{3}}{216}.\]

\[Ответ:\ \ \frac{\pi p^{3}}{216}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам