\[\boxed{\mathbf{884}\mathbf{.}}\]
\[f(x) = x^{3} + 3x^{2} + ax\]
\[f^{'}(x) = \left( x^{3} \right)^{'} + 3 \bullet \left( x^{2} \right)^{'} + a \bullet (x)^{'} =\]
\[= 3x^{2} + 3 \bullet 2x + a =\]
\[= 3x^{2} + 6x + a\]
\[D = 6^{2} - 4 \bullet 3 \bullet a = 36 - 12a =\]
\[= 12 \bullet (3 - a) \leq 0\]
\[3 - a \leq 0\]
\[a \geq 3.\]
\[Ответ:\ \ a \geq 3.\]