\[\boxed{\mathbf{337}\mathbf{.}}\]
\[1)\log_{2}(x - 5) + \log_{2}(x + 2) = 3\]
\[\log_{2}\left( (x - 5)(x + 2) \right) = \log_{2}2^{3}\]
\[(x - 5)(x + 2) = 2^{3}\]
\[x^{2} + 2x - 5x - 10 = 8\]
\[x^{2} - 3x - 18 = 0\]
\[D = 3^{2} + 4 \bullet 18 = 9 + 72 = 81\]
\[x_{1} = \frac{3 - 9}{2} = - 3;\text{\ \ }\]
\[x_{2} = \frac{3 + 9}{2} = 6.\]
\[имеет\ смысл\ при:\]
\[x - 5 > 0\ \]
\[x > 5;\]
\[x + 2 > 0\]
\[x > - 2.\]
\[Ответ:\ \ x = 6.\]
\[2)\log_{3}(x - 2) + \log_{3}(x + 6) = 2\]
\[\log_{3}\left( (x - 2)(x + 6) \right) = \log_{3}3^{2}\]
\[(x - 2)(x + 6) = 3^{2}\]
\[x^{2} + 6x - 2x - 12 = 9\]
\[x^{2} + 4x - 21 = 0\]
\[D = 4^{2} + 4 \bullet 21 = 16 + 84 =\]
\[= 100\]
\[x_{1} = \frac{- 4 - 10}{2} = - 7;\text{\ \ }\]
\[x_{2} = \frac{- 4 + 10}{2} = 3.\]
\[имеет\ смысл\ при:\]
\[x - 2 > 0\ \]
\[x > 2;\]
\[x + 6 > 0\ \]
\[x > - 6.\]
\[Ответ:\ \ x = 3.\]
\[3)\lg\left( x + \sqrt{3} \right) + \lg\left( x - \sqrt{3} \right) = 0\]
\[\lg\left( \left( x + \sqrt{3} \right)\left( x - \sqrt{3} \right) \right) = \lg 1\]
\[\left( x + \sqrt{3} \right)\left( x - \sqrt{3} \right) = 1\]
\[x^{2} - 3 = 1\]
\[x^{2} = 4\ \]
\[x = \pm 2.\]
\[имеет\ смысл\ при:\]
\[x + \sqrt{3} > 0\ \]
\[x > - \sqrt{3}.\]
\[x - \sqrt{3} > 0\ \]
\[x > \sqrt{3.}\]
\[3 < 4 \Longrightarrow \ \sqrt{3} < 2.\]
\[Ответ:\ \ x = 2.\]
\[4)\lg(x - 1) + \lg(x + 1) = 0\]
\[\lg\left( (x - 1)(x + 1) \right) = \lg 1\]
\[(x - 1)(x + 1) = 1\]
\[x^{2} - 1 = 1\]
\[x^{2} = 2\ \]
\[x = \pm \sqrt{2}.\]
\[имеет\ смысл\ при:\]
\[x - 1 > 0\ \]
\[x > 1.\]
\[x + 1 > 0\ \]
\[x > - 1.\]
\[2 > 1 \Longrightarrow \sqrt{2} > 1.\]
\[Ответ:\ \ x = \sqrt{2}.\]