\[\boxed{\mathbf{336}\mathbf{.}}\]
\[1)\ x - 3 = 0\ \ и\ \ x^{2} - 5x + 6 = 0\]
\[первое\ уравнение:\]
\[x - 3 = 0\ \]
\[x = 3.\]
\[второе\ уравнение:\]
\[x^{2} - 5x + 6 = 0\]
\[D = 5^{2} - 4 \bullet 6 = 25 - 24 = 1\]
\[x_{1} = \frac{5 - 1}{2} = 2;\text{\ \ }x_{2} = \frac{5 + 1}{2} = 3.\]
\[Ответ:\ \ второе.\]
\[2)\ |x| = 5\ \ и\ \ \sqrt{x^{2}} = 5\]
\[первое\ уравнение:\]
\[\sqrt{x^{2}} = 5\]
\[|x| = 5.\]
\[Ответ:\ \ каждое\ из\ них.\]
\[3)\ \frac{x^{2} - 3x + 2}{x - 1} = 0\ \ и\ \ \]
\[x^{2} - 3x + 2 = 0\]
\[второе\ уравнение:\]
\[x^{2} - 3x + 2 = 0\]
\[D = 3^{2} - 4 \bullet 2 = 9 - 8 = 1\]
\[x_{1} = \frac{3 - 1}{2} = 1;\text{\ \ }x_{2} = \frac{3 + 1}{2} = 2.\]
\[первое\ уравнение:\]
\[\frac{x^{2} - 3x + 2}{x - 1} = 0\]
\[\frac{(x - 1)(x - 2)}{x - 1} = 0\]
\[x - 2 = 0\]
\[x = 2\]
\[Ответ:\ \ второе.\]
\[4)\log_{8}x + \log_{8}(x - 2) = 1\ \ и\ \]
\[\log_{8}\left( x(x - 2) \right) = 1\]
\[второе\ уравнение:\]
\[\log_{8}\left( x(x - 2) \right) = 1\]
\[\log_{8}\left( x^{2} - 2x \right) = \log_{8}8\]
\[x^{2} - 2x = 8\]
\[x^{2} - 2x - 8 > 0\]
\[D = 2^{2} + 4 \bullet 8 = 4 + 32 = 36\]
\[x_{1} = \frac{2 - 6}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{2 + 6}{2} = 4.\]
\[первое\ уравнение:\]
\[\log_{8}x + \log_{8}(x - 2) = 1\]
\[\log_{8}\left( x(x - 2) \right) = 1\]
\[x_{1} = - 2;\text{\ \ }x_{2} = 4.\]
\[имеет\ смысл\ при:\]
\[x - 2 > 0\ \]
\[x > 2.\]
\[Значит,\ x = 4.\]
\[Ответ:\ \ второе.\]