Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 306

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 306

\[\boxed{\mathbf{306}\mathbf{.}}\]

\[1)\ 5^{\frac{\lg 625}{\lg 25}} = 5^{\log_{25}625} =\]

\[= 5^{\log_{25}25^{2}} = 5^{2} = 25\]

\[2)\log_{\frac{1}{4}}\left( \log_{3}4 \bullet \log_{2}3 \right) =\]

\[= \log_{\frac{1}{4}}\left( \frac{\lg 4}{\lg 3} \bullet \frac{\lg 3}{\lg 2} \right) = \log_{\frac{1}{4}}\frac{\lg 4}{\lg 2} =\]

\[= \log_{\frac{1}{4}}{\log_{2}4} = \log_{\frac{1}{4}}{\log_{2}2^{2}} =\]

\[= \log_{\frac{1}{4}}2 = \log_{\frac{1}{4}}4^{\frac{1}{2}} =\]

\[= \log_{\frac{1}{4}}\left( \frac{1}{4} \right)^{- \frac{1}{2}} = - \frac{1}{2} = - 0,5\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам