\[\boxed{\mathbf{277}\mathbf{.}}\]
\[1)\log_{6}x = 3\]
\[\log_{6}x = \log_{6}6^{3}\]
\[x = 6^{3} = 216\]
\[Ответ:\ \ x = 216.\]
\[2)\log_{5}x = 4\]
\[\log_{5}x = \log_{5}5^{4}\]
\[x = 5^{4}\]
\[x = 625\]
\[Ответ:\ \ x = 625.\]
\[3)\log_{2}(5 - x) = 3\]
\[\log_{2}(5 - x) = \log_{2}2^{3}\]
\[5 - x = 2^{3}\]
\[5 - x = 8\]
\[- x = 3\]
\[x = - 3\]
\[Ответ:\ \ x = - 3.\]
\[4)\log_{3}(x + 2) = 3\]
\[\log_{3}(x + 2) = \log_{3}3^{3}\]
\[x + 2 = 3^{3}\]
\[x + 2 = 27\ \]
\[x = 25\]
\[Ответ:\ \ x = 25.\]
\[5)\log_{\frac{1}{6}}(0,5 + x) = - 1\]
\[\log_{\frac{1}{6}}(0,5 + x) = \log_{\frac{1}{6}}\left( \frac{1}{6} \right)^{- 1}\]
\[0,5 + x = \left( \frac{1}{6} \right)^{- 1}\]
\[0,5 + x = 6\ \]
\[x = 5,5\]
\(Ответ:\ \ x = 5,5.\)