Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 106

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 106

\[\boxed{\mathbf{106}\mathbf{.}}\]

\[1)\ b_{2} = - 81\ \ и\ \ S_{2} = 162\]

\[b_{2} = b_{1} \bullet q,\ осюда\ b_{1} = \frac{b_{2}}{q};\]

\[S_{2} = \frac{b_{1}\left( 1 - q^{2} \right)}{1 - q} = \frac{b_{2}\left( 1 - q^{2} \right)}{q(1 - q)} =\]

\[= \frac{b_{2}(1 - q)(1 + q)}{q(1 - q)} = \frac{b_{2}(1 + q)}{q};\]

\[S_{2} = \frac{- 81(1 + q)}{q} = 162;\]

\[- 81(1 + q) = 162q;\]

\[- 81 - 81q = 162q;\]

\[243q = - 81 \Longrightarrow q = \frac{- 81}{243} = - \frac{1}{3}\]

\[|q| < 1 - прогрессия\ \]

\[бесконечно\ убывает.\]

\[2)\ b_{2} = 33\ \ и\ \ S_{2} = 67\]

\[b_{2} = b_{1} \bullet q,\ осюда\ b_{1} = \frac{b_{2}}{q};\]

\[S_{2} = \frac{b_{1}\left( 1 - q^{2} \right)}{1 - q} = \frac{b_{2}\left( 1 - q^{2} \right)}{q(1 - q)} =\]

\[= \frac{b_{2}(1 - q)(1 + q)}{q(1 - q)} = \frac{b_{2}(1 + q)}{q};\]

\[S_{2} = \frac{33(1 + q)}{q} = 67;\]

\[33(1 + q) = 67q;\]

\[33 + 33q = 67q;\]

\[34q = 33 \Longrightarrow q = \frac{33}{34};\]

\[|q| < 1 - прогрессия\ \]

\[бесконечно\ убывает.\]

\[3)\ b_{1} + b_{2} = 130\ \ и\ \ \]

\[b_{1} - b_{3} = 120\]

\[Второе\ выражение:\]

\[b_{1} - b_{1} \bullet q^{2} = 120;\]

\[b_{1} \bullet \left( 1 - q^{2} \right) = 120;\]

\[b_{1} = \frac{120}{1 - q^{2}}.\]

\[Первое\ выражение:\]

\[b_{1} + b_{1} \bullet q = 130;\]

\[120 + 120q - 130\left( 1 - q^{2} \right) = 0;\]

\[120 + 120q - 130 + 130q^{2} = 0;\]

\[130q^{2} + 120q - 10 = 0\ \ \ \ \ |\ :10;\]

\[13q^{2} + 12q - 1 = 0;\]

\[D = 12^{2} + 4 \bullet 13 =\]

\[= 144 + 52 = 196,\ тогда:\]

\[q_{1} = \frac{- 12 - 14}{2 \bullet 13} = - \frac{26}{26} = - 1;\]

\[q_{2} = \frac{- 12 + 14}{2 \bullet 13} = \frac{2}{26} = \frac{1}{13}.\]

\[Выражение\ имеет\ смысл\ при:\]

\[1 - q^{2} \neq 0,\ отсюда\ q \neq \pm 1;\]

\[Таким\ образом:\]

\[|q| = \frac{1}{13} < 1 - прогрессия\ \]

\[бесконечно\ убывает.\]

\[4)\ b_{2} + b_{4} = 68\ \ и\ \ b_{2} - b_{4} = 60\]

\[Первое\ выражение:\]

\[b_{2} + b_{4} = 68;\]

\[b_{2} = 68 - b_{4}.\]

\[Второе\ выражение:\]

\[b_{2} - b_{4} = 60;\]

\[68 - b_{4} - b_{4} = 60;\]

\[- 2b_{4} = - 8;\]

\[b_{4} = \frac{- 8}{- 2} = 4;\]

\[b_{2} = 68 - 4 = 64.\]

\[Значение\ знаменателя\ \]

\[прогрессии:\]

\[b_{2} = b_{1} \bullet q = 64 \Longrightarrow b_{1} = \frac{64}{q};\]

\[b_{4} = b_{1} \bullet q^{3} = 4 \Longrightarrow \ b_{1} = \frac{4}{q^{3}};\]

\[\frac{64}{q} = \frac{4}{q^{3}};\]

\[64q^{3} = 4q;\]

\[64q^{3} - 4q = 0;\]

\[16q^{3} - q = 0;\]

\[q \bullet \left( 16q^{2} - 1 \right) = 0;\]

\[q \bullet (4q - 1)(4q + 1) = 0;\]

\[q_{1} = 0,\ \ \ q_{2} = \frac{1}{4},\ \ \ q_{3} = - \frac{1}{4}.\]

\[Таким\ образом:\]

\[|q| = \frac{1}{4} < 1 - прогрессия\ \]

\[бесконечно\ убывает.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам