Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 1028

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 1028

\[\boxed{\mathbf{1028}\mathbf{.}}\]

\[1)\ y^{'} = \sin x\ и\ \ y(0) = 0:\]

\[y = - \cos x + C;\]

\[Удовлетворяет\ условию:\]

\[0 = - \cos 0 + C\]

\[0 = - 1 + C\ \]

\[C = 1.\]

\[Ответ:\ \ y = 1 - \cos x.\]

\[2)\ y^{'} = 2\cos x\ и\ \ y(\pi) = 1:\]

\[y = 2\sin x + C;\]

\[Удовлетворяет\ условию:\]

\[1 = 2\sin\pi + C\]

\[1 = 2 \bullet 0 + C\ \]

\[C = 1.\]

\[Ответ:\ \ y = 2\sin x + 1.\]

\[3)\ y^{'} = 3x^{2} + 4x - 1\ \ и\ \ \]

\[y(1) = - 2:\]

\[y = 3 \bullet \frac{x^{3}}{3} + 4 \bullet \frac{x^{2}}{2} - 1 \bullet \frac{x^{1}}{1} =\]

\[= x^{3} + 2x^{2} - x + C;\]

\[Удовлетворяет\ условию:\]

\[- 2 = 1^{3} + 2 \bullet 1^{2} - 1 + C\]

\[- 2 = 1 + 2 - 1 + C\]

\[- 2 = 2 + C\ \]

\[C = - 4.\]

\[Ответ:\ \ y = x^{3} + 2x^{2} - x - 4.\]

\[4)\ y^{'} = 2 + 2x - 3x^{2}\text{\ \ }и\ \ \]

\[y( - 1) = 2:\]

\[y = 2 \bullet \frac{x^{1}}{1} + 2 \bullet \frac{x^{2}}{2} - 3 \bullet \frac{x^{3}}{3} =\]

\[= 2x + x^{2} - x^{3} + C;\]

\[Удовлетворяет\ условию:\]

\[2 =\]

\[= 2 \bullet ( - 1) + ( - 1)^{2} - ( - 1)^{3} + C\]

\[2 = - 2 + 1 + 1 + C\ \]

\[C = 2.\]

\[Ответ:\ \ y = 2x + x^{2} - x^{3} + 2.\]

\[5)\ y^{'} = e^{x}\text{\ \ }и\ \ y(1) = 1:\]

\[y = e^{x} + C;\]

\[Удовлетворяет\ условию:\]

\[1 = e^{1} + C\]

\[1 = e + C\ \]

\[C = 1 - e.\]

\[Ответ:\ \ y = e^{x} + 1 - e.\]

\[6)\ y^{'} = e^{- x}\text{\ \ }и\ \ y(0) = 2:\]

\[y = \frac{1}{- 1} \bullet e^{- x} = - e^{- x} + C;\]

\[Удовлетворяет\ условию:\]

\[2 = - e^{0} + C\]

\[2 = - 1 + C\ \]

\[C = 3.\]

\[Ответ:\ \ y = 3 - e^{- x}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам