\[\boxed{\mathbf{937.}}\]
\[Пусть\ x - градусная\ мера\ угла.\]
\[Сумма\ углов\ треугольника\]
\[\ равна\ 180{^\circ}.\]
\[Составим\ уравнение:\]
\[x + 3x + 5x = 180\]
\[9x = 180\]
\[x = 20{^\circ} - первый\ угол.\]
\[3x = 3 \cdot 20{^\circ} = 60{^\circ} - второй\ \]
\[угол.\]
\[5x = 5 \cdot 20{^\circ} = 100{^\circ} - третий\ \]
\[угол.\]
\[20{^\circ} = \frac{20}{90}d = \frac{2}{9}\text{d.}\]
\[60{^\circ} = \frac{60}{90}d = \frac{2}{3}\text{d.}\]
\[100{^\circ} = \frac{100}{90}d = \frac{10}{9}d = 1\frac{1}{9}\text{d.}\]
\[Ответ:\ \frac{2}{9}d;\ \frac{2}{3}d;1\frac{1}{9}\text{d.}\]