\[\boxed{\mathbf{867}.}\]
\[1)\log_{15}(x - 3) +\]
\[+ \log_{15}(x - 5) < 1\]
\[\log_{15}\left( (x - 3)(x - 5) \right) < \log_{15}15\]
\[(x - 3)(x - 5) < 15\]
\[x^{2} - 5x - 3x + 15 < 15\]
\[x^{2} - 8x < 0\]
\[x(x - 8) < 0\]
\[0 < x < 8.\]
\[имеет\ смысл\ при:\]
\[x - 3 > 0 \Longrightarrow \ x > 3;\]
\[x - 5 > 0 \Longrightarrow x > 5.\]
\[Ответ:\ \ 5 < x < 8.\]
\[2)\log_{\frac{1}{3}}(x - 2) +\]
\[+ \log_{\frac{1}{3}}(12 - x) \geq - 2\]
\[\log_{\frac{1}{3}}\left( (x - 2)(12 - x) \right) \geq\]
\[\geq \log_{\frac{1}{3}}\left( \frac{1}{3} \right)^{- 2}\]
\[(x - 2)(12 - x) \leq \left( \frac{1}{3} \right)^{- 2}\]
\[12x - x^{2} - 24 + 2x \leq 3^{2}\]
\[- x^{2} + 14x - 24 \leq 9\]
\[x^{2} - 14x + 33 \geq 0\]
\[D = 14^{2} - 4 \bullet 33 =\]
\[= 196 - 132 = 64\]
\[x_{1} = \frac{14 - 8}{2} = 3;\text{\ \ }\]
\[x_{2} = \frac{14 + 8}{2} = 11.\]
\[(x - 3)(x - 11) \geq 0\]
\[x \leq 3;\text{\ \ }x \geq 11.\]
\[имеет\ смысл\ при:\]
\[x - 2 > 0 \Longrightarrow x > 2;\]
\[12 - x > 0 \Longrightarrow x < 12.\]
\[Ответ:\ \ 2 < x \leq 3;\ \]
\[\ 11 \leq x < 12.\]