\[\boxed{\mathbf{865}.}\]
\[1)\log_{3}(x + 2) < 3\]
\[\log_{3}(x + 2) < \log_{3}3^{3}\]
\[x + 2 < 3^{3}\]
\[x + 2 < 27\]
\[x < 25.\]
\[имеет\ смысл\ при:\]
\[x + 2 > 0\ \]
\[x > - 2.\]
\[Ответ:\ \ - 2 < x < 25.\]
\[2)\log_{8}(4 - 2x) \geq 2\]
\[\log_{8}(4 - 2x) \geq \log_{8}8^{2}\]
\[4 - 2x \geq 64\]
\[- 2x \geq 60\]
\[x \leq - 30.\]
\[имеет\ смысл\ при:\]
\[4 - 2x > 0\]
\[2x < 4\ \]
\[x < 2.\]
\[Ответ:\ \ x \leq - 30.\]
\[3)\log_{3}(x + 1) < - 2\]
\[\log_{3}(x + 1) < \log_{3}3^{- 2}\]
\[x + 1 < 3^{- 2}\]
\[x < - 1 + \frac{1}{3^{2}}\]
\[x < - 1 + \frac{1}{9}\ \]
\[x < - \frac{8}{9}.\]
\[имеет\ смысл\ при:\]
\[x + 1 > 0\]
\[x > - 1.\]
\[Ответ:\ \ - 1 < x < - \frac{8}{9}.\]
\[4)\log_{\frac{1}{3}}(x - 1) \geq - 2\]
\[\log_{\frac{1}{3}}(x - 1) \geq \log_{\frac{1}{3}}\left( \frac{1}{3} \right)^{- 2}\]
\[x - 1 \leq \left( \frac{1}{3} \right)^{- 2}\]
\[x - 1 \leq 3^{2}\]
\[x \leq 9 + 1\]
\[x \leq 10.\]
\[имеет\ смысл\ при:\]
\[x - 1 > 0\ \]
\[x > 1.\]
\[Ответ:\ \ 1 < x \leq 10.\]
\[5)\log_{\frac{1}{5}}(4 - 3x) \geq - 1\]
\[\log_{\frac{1}{5}}(4 - 3x) \geq \log_{\frac{1}{5}}\left( \frac{1}{5} \right)^{- 1}\]
\[4 - 3x \leq \left( \frac{1}{5} \right)^{- 1}\]
\[4 - 3x \leq 5\]
\[- 3x \leq 1\]
\[x \geq - \frac{1}{3}.\]
\[имеет\ смысл\ при:\]
\[4 - 3x > 0\]
\[- 3x > - 4\]
\[x < 1\frac{1}{3}.\]
\[Ответ:\ \ - \frac{1}{3} \leq x < 1\frac{1}{3}.\]
\[6)\log_{\frac{2}{3}}(2 - 5x) < - 2\]
\[\log_{\frac{2}{3}}(2 - 5x) < \log_{\frac{2}{3}}\left( \frac{2}{3} \right)^{- 2}\]
\[2 - 5x > \left( \frac{2}{3} \right)^{- 2}\]
\[- 5x > \left( \frac{3}{2} \right)^{2} - 2\]
\[- 5x > \frac{9}{4} - \frac{8}{4}\]
\[- 5x > \frac{1}{4}\]
\[5x < - 0,25\]
\[x < - 0,05.\]
\[имеет\ смысл\ при:\]
\[2 - 5x > 0\]
\[5x < 2\ \]
\[x < 0,4.\]
\[Ответ:\ \ x < - 0,05.\]