\[\boxed{\mathbf{863}.}\]
\[\frac{\lg x}{\lg\left( x - a - a^{2} \right)} = 2\ \ \ \ \ \]
\[ОДЗ:\]
\[x > 0;\ \ x > a + a^{2}.\]
\[\lg x = 2\lg{(x - a - a^{2})}\text{\ \ \ }\]
\[\lg x = \lg\left( x - a - a^{2} \right)^{2}\]
\[x = \left( x - a - a^{2} \right)^{2}\]
\[x^{2} + \left( - 2a^{2} - 2a - 1 \right)x + a^{4} +\]
\[+ 2a^{3} + a^{2} = 0\]
\[D = \left( - 2a^{2} - 2a - 1 \right)^{2} -\]
\[- 4 \cdot \left( a^{4} + 2a^{3} + a^{2} \right) = 4a^{2} +\]
\[+ 4a + 1 = (2a + 1)^{2}\]
\[1)\ a = - \frac{1}{2} \rightarrow x = \frac{1}{4};\ \]
\[2)\ a \neq - \frac{1}{2}:\]
\[x_{1} = a^{2};\ \ x_{2} = a^{2} + 2a +\]
\[+ 1 = (x + 1)^{2};\]
\[3)\ a + a^{2} = 0\ (a = 0):\]
\[\frac{\lg x}{\lg x} = 2\]
\[1 = 2\]
\[уравнение\ не\ имеет\ корней.\]
\[4)\ a^{2} + a < 0:\]
\[- 1 < a < 0\]
\[x_{1} = a^{2};\ \ x_{2} = (a + 1)^{2}.\]
\[5)\ a^{2} + a > 0:\]
\[a > 0 \rightarrow a^{2} > a^{2} + a;\]
\[a < - 1 \rightarrow (a + 1)^{2} < a^{2} + a.\]
\[При\ a < - 1 \rightarrow x = a^{2};\]
\[при\ a > 0 \rightarrow x = (a + 1)^{2}.\]
\[6)\ при\ a = 1 \rightarrow нет\ корней.\]
\[Ответ:уравнение\ имеет\ хотя\ \]
\[бы\ один\ корень\ при\ a < - 1;\ \]
\[при\ a = - \frac{1}{2};\]
\[при - 1 < a < 0\ \left( a \neq - \frac{1}{2} \right)\text{.\ }\]