\[\boxed{\mathbf{845}.}\]
\[1)\ \left\{ \begin{matrix} \lg x - \lg y = 2\ \\ x - 10y = 900 \\ \end{matrix} \right.\ \]
\[\lg x - \lg y = 2\]
\[\lg\left( \frac{x}{y} \right) = 2\]
\[\frac{x}{y} = 10^{2}\]
\[\frac{x}{y} = 100\ \]
\[x = 100y.\]
\[Подставим\ во\ второе\]
\[\ уравнение:\]
\[100y - 10y = 900\]
\[90y = 900\]
\[y = 10.\]
\[x = 100y = 10 \cdot 100 = 1000.\]
\[\left\{ \begin{matrix} x = 1000 \\ y = 10\ \ \ \ \ \\ \end{matrix} \right.\ \ \]
\[Ответ:(1000;10).\]
\[2)\ \left\{ \begin{matrix} \log_{3}x + \log_{3}y = 2 \\ x^{2}y - 2y + 9 = 0\ \ \\ \end{matrix} \right.\ \]
\[\log_{3}\ x + \log_{3}\ y = 2\]
\[\log_{3}\ \left( \text{xy} \right) = 2\]
\[xy = 3^{2}\]
\[xy = 9\]
\[x = \frac{9}{y}.\]
\[Подставим\ во\ второе\]
\[\ уравнение\ системы:\]
\[\left( \frac{9}{y} \right)^{2} \cdot y - 2y + 9 = 0\]
\[\frac{81}{y} - 2y + 9 = 0\ \ \ \ \ \ \ \ | \cdot y \neq 0\]
\[81 - 2y^{2} + 9y = 0\]
\[2y^{2} - 9y - 81 = 0\]
\[D = 81 + 648 = 729 = 27^{2}\]
\[y_{1} = \frac{9 + 27}{4} = 9;\ \ \ \]
\[y_{2} = \frac{9 - 27}{x} = - 4,5.\]
\[\textbf{а)}\ y = 9:\]
\[x = \frac{9}{y} = \frac{9}{9} = 1.\]
\[\textbf{б)}\ y = - 4,5:\]
\[x = \frac{9}{- 4,5} = - 2.\]
\[Проверка\ показывает,\ что\ x =\]
\[= - 4,5;y = - 2\ не\ являются\]
\[\ решением\]
\[системы.\]
\[Ответ:(1;9).\]