Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 838

Авторы:
Тип:учебник

Задание 838

\[\boxed{\mathbf{838}.}\]

\[1)\ y = \log_{2}|3 - x| -\]

\[- \log_{2}\left| x^{3} - 8 \right|\]

\[Область\ определения\ \]

\[функции:\]

\[\left\{ \begin{matrix} 3 - x \neq 0\ \ \\ x^{3} - 8 \neq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\left\{ \begin{matrix} x \neq 3 \\ x \neq 2 \\ \end{matrix} \right.\ \]

\[Ответ:x \neq 3;\ \ x \neq 2.\]

\[2)\ y = \log_{0,3}\sqrt{x + 1} +\]

\[+ \log_{0,4}\left( 1 - 8x^{3} \right)\]

\[\left\{ \begin{matrix} x + 1 > 0\ \ \ \ \ \\ 1 - 8x^{3} > 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ \ }\left\{ \begin{matrix} x > - 1\ \\ 8x^{3} < 1 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} x > - 1 \\ x < \frac{1}{2}\text{\ \ \ } \\ \end{matrix} \right.\ \]

\[Ответ:\ - 1 < x < \frac{1}{2}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам