\(\boxed{\mathbf{834}.}\)
\[1)\ y = \log_{8}{(x^{2} - 3x - 4)}\]
\[x^{2} - 3x - 4 > 0\]
\[x_{1} + x_{2} = 3;\ \ \ x_{1} \cdot x_{2} = - 4\]
\[x_{1} = 4;\ \ \ \ x_{2} = - 1;\]
\[(x + 1)(x - 4) > 0\]
\[x < - 1;\ \ x > 4\]
\[D(y) = ( - \infty; - 1) \cup (4; + \infty).\]
\[2)\ y = \log_{\sqrt{3}}\left( - x^{2} + 5x + 6 \right)\]
\[- x^{2} + 5x + 6 > 0\]
\[x^{2} - 5x - 6 < 0\]
\[x_{1} + x_{2} = 5;\ \ \ x_{1} \cdot x_{2} = - 6\]
\[x_{1} = 6;\ \ \ x_{2} = - 1;\]
\[(x + 1)(x - 6) < 0\]
\[- 1 < x < 6\]
\[D(y) = ( - 1;6).\]
\[3)\ y = \log_{0,7}\frac{x^{2} - 9}{x + 5}\]
\[\frac{x^{2} - 9}{x + 5} > 0\]
\[\frac{(x - 3)(x + 3)}{x + 5} > 0\]
\[- 5 < x < - 3;x > 3.\]
\[D(y) = ( - 5;\ - 3) \cup (3; + \infty).\]
\[4)\ y = \log_{\frac{1}{3}}\frac{x - 4}{x^{2} + 4}\]
\[\frac{x - 4}{x^{2} + 4} > 0\]
\[x - 4 > 0\]
\[x > 4\]
\[D(y) = (4; + \infty).\]
\[5)\ y = \log_{\pi}{(2^{x} - 2)}\]
\[2^{x} - 2 > 0\]
\[2^{x} > 2\]
\[2^{x} > 2^{1}\]
\[x > 1\]
\[D(y) = (1; + \infty).\]
\[6)\ y = \log_{3}{(3^{x - 1} - 9)}\]
\[3^{x - 1} - 9 > 0\]
\[3^{x - 1} > 9\]
\[3^{x - 1} > 3^{2}\]
\[x - 1 > 2\]
\[x > 3\]
\[D(y) = (3; + \infty).\]