\[\boxed{\mathbf{831}.}\]
\[1)\ y = \log_{4}(x - 1)\]
\[x - 1 > 0\]
\[x > 1\]
\[D(y) = (1; + \infty).\]
\[2)\ y = \log_{0,3}(1 + x)\]
\[1 + x > 0\]
\[x > - 1\]
\[D(y) = ( - 1; + \infty).\]
\[3)\ y = \log_{3}\left( x^{2} + 2x \right)\]
\[x^{2} + 2x > 0\]
\[x(x + 2) > 0\]
\[x > 0;x < 2.\]
\[D(y) = (0;2).\]
\[4)\ y = \log_{\sqrt{2}}\left( 4 - x^{2} \right)\]
\[4 - x^{2} > 0\]
\[(x - 2)(x + 2) < 0\]
\[- 2 < x < 2\]
\[D(y) = ( - 2;2).\]