\[\boxed{\mathbf{817}.}\]
\[1)\ 2,2 \cdot 10^{9} \cdot n = 5 \cdot 10^{12}\]
\[n = \frac{5 \cdot 10^{12}}{2,2 \cdot 10^{9}} = 2,2727\ldots \cdot 10^{3} =\]
\[= 2272,7\ldots \approx 2273\ (года).\]
\[2)\ 5 \cdot 10^{12} =\]
\[= \left( 2,2 \cdot 10^{9} \right)\left( 1 + 1,05 + \ldots + {1,05}^{t - 1} \right)\]
\[5 \cdot 10^{12} = 2,2 \cdot 10^{9} \cdot \frac{{1,05}^{t} - 1}{0,05}\]
\[\frac{{1,05}^{t} - 1}{0,05} = \frac{5 \cdot 10^{12}}{2,2 \cdot 10^{9}}\]
\[{1,05}^{t} - 1 = 2273 \cdot 0,05\]
\[{1,05}^{t} = 113,65 + 1 = 114,65.\]
\[t = \frac{\ln{114,65}}{\ln{1,05}} \approx 97,18 \approx\]
\[\approx 97\ (лет).\]
\[5 \cdot 10^{12} = 2,2 \cdot 10^{9} \cdot\]
\[\cdot \left( 1 + 1,04 + \ldots + {1,04}^{t - 1} \right)\]
\[5 \cdot 10^{12} = 2,2 \cdot 10^{9} \cdot \frac{{1,04}^{t} - 1}{0,04}\]
\[\frac{{1,04}^{t} - 1}{0,04} = \frac{5 \cdot 10^{12}}{2,2 \cdot 10^{9}}\]
\[\frac{{1,04}^{t} - 1}{0,04} = 2273\]
\[{1,04}^{t} - 1 = 2273 \cdot 0,04\]
\[{1,04}^{t} = 90,92 + 1 = 91,92\]
\[t = \frac{\ln{91,92}}{\ln{1,04}} =\]
\[= 115,26\ldots \approx 115\ (лет).\]
\[Ответ:1)\ на\ 2273\ года;\ \ 2)\ на\]
\[\ 97\ лет,\ на\ 115\ лет.\]