\[\boxed{\mathbf{707}.}\]
\[1)\ 3^{x + 2} + 3^{x - 1} < 28;\]
\[3^{x} \bullet \left( 3^{2} + 3^{- 1} \right) < 28;\]
\[3^{x} \bullet \left( 9 + \frac{1}{3} \right) < 28;\]
\[3^{x} \bullet \left( \frac{27}{3} + \frac{1}{3} \right) < 28;\]
\[3^{x} \bullet \frac{28}{3} < 28;\]
\[3^{x} < 3;\]
\[3^{x} < 3^{1};\ \]
\[x < 1;\]
\[Ответ:\ \ x < 1.\]
\[2)\ 2^{x - 1} + 2^{x + 3} > 17;\]
\[2^{x} \bullet \left( 2^{- 1} + 2^{3} \right) > 17;\]
\[2^{x} \bullet \left( \frac{1}{2} + 8 \right) > 17;\]
\[2^{x} \bullet \left( \frac{1}{2} + \frac{16}{2} \right) > 17;\]
\[2^{x} \bullet \frac{17}{2} > 17;\]
\[2^{x} > 2;\]
\[2^{x} > 2^{1};\]
\[x > 1;\]
\[Ответ:\ \ x > 1.\]
\[3)\ 2^{2x - 1} + 2^{2x - 2} +\]
\[+ 2^{2x - 3} \geq 448;\]
\[2^{2x} \bullet \left( 2^{- 1} + 2^{- 2} + 2^{- 3} \right) \geq 448;\]
\[2^{2x} \bullet \left( \frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right) \geq 448;\]
\[2^{2x} \bullet \left( \frac{4}{8} + \frac{2}{8} + \frac{1}{8} \right) \geq 448;\]
\[2^{2x} \bullet \frac{7}{8} \geq 448;\]
\[2^{2x} \geq 512;\]
\[2^{2x} \geq 2^{9};\]
\[2x \geq 9;\]
\[x \geq 4,5;\]
\[Ответ:\ \ x \geq 4,5.\]
\[4)\ 5^{3x + 1} - 5^{3x - 3} \leq 624;\]
\[5^{3x} \bullet \left( 5^{1} - 5^{- 3} \right) \leq 624;\]
\[5^{3x} \bullet \left( 5 - \frac{1}{125} \right) \leq 624;\]
\[5^{3x} \bullet \left( \frac{625}{125} - \frac{1}{125} \right) \leq 624;\]
\[5^{3x} \bullet \frac{624}{125} \leq 624;\]
\[5^{3x} \leq 125;\]
\[5^{3x} \leq 5^{3};\]
\[3x \leq 3;\]
\[x \leq 1;\]
\[Ответ:\ \ x \leq 1.\]