\[\boxed{\mathbf{700}.}\]
\[(k - 1) \cdot 4^{x} - 4 \cdot 2^{x} +\]
\[+ (k + 2) = 0\]
\[(k - 1) \cdot 2^{2x} - 4 \cdot 2^{x} +\]
+\((k + 2) = 0\)
\[Пусть\ 2^{x} = t > 0:\]
\[(k - 1)t^{2} - 4t + (k + 2) = 0\]
\[Уравнение\ имеет\ хотя\ бы\ \]
\[один\ корень\ при\ D \geq 0.\]
\[D = 16 - 4 \cdot (k - 1)(k + 2) =\]
\[= 16 - 4 \cdot \left( k^{2} - k + 2k - 2 \right) =\]
\[= 16 - 4k^{2} - 4k + 8 = - 4k^{2} -\]
\[- 4k + 24 \geq 0\ \ \ \ |\ :( - 4)\]
\[k^{2} + k - 6 \leq 0\]
\[k_{1} + k_{2} = - 1;\ \ k_{1} \cdot k_{2} = - 6\]
\[k_{1} = - 3;\ \ \ k_{2} = 2.\]
\[(k + 3)(k - 2) \leq 0\]
\[- 3 \leq k \leq 2.\]
\[Еще\ необходимо,\ чтобы\]
\[\ выполнялось\ условие,\ t > 0.\]
\[\left\{ \begin{matrix} \frac{4 + \sqrt{- 4k^{2} - 424}}{2 \cdot (k - 1)} > 0 \\ \frac{4 - \sqrt{- 4k^{2} - 424}}{2 \cdot (k - 1)} > 0 \\ \end{matrix} \right.\ \]
\[1)\ k - 1 > 0;\ \ k > 1:\]
\[\left\{ \begin{matrix} 2 + \sqrt{- k^{2} - k + 6} > 0 \\ 2 - \sqrt{- k^{2} - k + 6} > 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\ \left\{ \begin{matrix} \sqrt{- k^{2} - k + 6} > - 2 \\ \sqrt{- k^{2} - k + 6} < 2\ \ \ \\ \end{matrix} \right.\ \]
\[Первое\ неравенство\ верно\]
\[\ при\ любых\ k.\]
\[\sqrt{- k^{2} - k + 6} < 2:\]
\[\left\{ \begin{matrix} - k^{2} - k + 6 \geq 0 \\ - k^{2} - k + 6 < 4 \\ \end{matrix} \right.\ \]
\[- k^{2} - k + 2 < 0\]
\[k^{2} + k - 2 > 0\]
\[(k + 2)(k - 1) > 0;\ \ \ k > 1\]
\[1 < k \leq 2.\]
\[2)\ k - 1 < 0;\ \ k < 1:\]
\[\left\{ \begin{matrix} 2 + \sqrt{- k^{2} - k + 6} < 0 \\ 2 - \sqrt{- k^{2} - k + 6} < 0 \\ \end{matrix} \right.\ \]
\[Первое\ уравнение\ не\ имеет\ \]
\[решений.\]
\[\sqrt{- k^{2} - k + 6} > 2\]
\[- k^{2} - k + 6 > 4\]
\[k^{2} + k - 2 < 0\]
\[(k - 1)(k + 2) < 0\]
\[- 2 < k < 1.\]
\[3)\ k = 1:\]
\[(1 - 1)t^{2} - 4t + (1 + 2) = 0\]
\[- 4t + 3 = 0\]
\[t = \frac{3}{4}.\]
\[Ответ:\ - 2 < k \leq 2.\]