\[\boxed{\mathbf{692}.}\]
\[1)\ (0,5)^{x^{2} - 4x + 3} = (0,5)^{2x^{2} + x + 3};\]
\[x^{2} - 4x + 3 = 2x^{2} + x + 3;\]
\[x^{2} + 5x = 0;\]
\[(x + 5)x = 0;\]
\[x_{1} = - 5\ \ и\ \ x_{2} = 0;\]
\[Ответ:\ \ x_{1} = - 5;\ \ x_{2} = 0.\]
\[2)\ (0,1)^{3 + 2x} = (0,1)^{2 - x^{2}};\]
\[3 + 2x = 2 - x^{2};\]
\[x^{2} + 2x + 1 = 0;\]
\[(x + 1)^{2} = 0;\]
\[x + 1 = 0;\]
\[x = - 1;\]
\[Ответ:\ \ x = - 1.\]
\[3)\ 3^{\sqrt{x - 6}} = 3^{x};\]
\[\sqrt{x - 6} = x;\]
\[x - 6 = x^{2};\]
\[x^{2} - x + 6 = 0;\]
\[D = 1^{2} - 4 \bullet 6 =\]
\[= 1 - 24 = - 23 < 0\]
\[корней\ нет;\]
\[Ответ:\ \ нет\ решений.\]
\[4)\ \left( \frac{1}{3} \right)^{x} = \left( \frac{1}{3} \right)^{\sqrt{2 - x}};\]
\[x = \sqrt{2 - x};\]
\[x^{2} = 2 - x;\]
\[x^{2} + x - 2 = 0;\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2\ \ и\]
\[\text{\ \ }x_{2} = \frac{- 1 + 3}{2} = 1;\]
\[Выражение\ имеет\ смысл\ при:\]
\[2 - x \geq 0 \Longrightarrow \ x \leq 2;\]
\[Уравнение\ имеет\ \]
\[решения\ при:\]
\[x \geq 0;\]
\[Ответ:\ \ x = 1.\]