\[\boxed{\mathbf{691}.}\]
\[1)\ 7^{x - 2} = 3^{2 - x};\]
\[7^{x - 2} = \left( \frac{1}{3} \right)^{- (2 - x)};\]
\[7^{x - 2} = \left( \frac{1}{3} \right)^{x - 2};\]
\[7^{x - 2}\ :\left( \frac{1}{3} \right)^{x - 2} = 1;\]
\[(7 \bullet 3)^{x - 2} = (7 \bullet 3)^{0};\]
\[x - 2 = 0;\]
\[x = 2;\]
\[Ответ:\ \ x = 2.\]
\[2)\ 2^{x - 3} = 3^{3 - x};\]
\[2^{x - 3} = \left( \frac{1}{3} \right)^{- (3 - x)};\]
\[2^{x - 3} = \left( \frac{1}{3} \right)^{x - 3};\]
\[2^{x - 3}\ :\left( \frac{1}{3} \right)^{x - 3} = 1;\]
\[(2 \bullet 3)^{x - 3} = (2 \bullet 3)^{0};\]
\[x - 3 = 0;\ \]
\[x = 3;\]
\[Ответ:\ \ x = 3.\]
\[3)\ 3^{\frac{x + 2}{4}} = 5^{x + 2};\]
\[\sqrt[4]{3^{x + 2}} = 5^{x + 2};\]
\[\frac{\sqrt[4]{3^{x + 2}}}{5^{x + 2}} = 1;\]
\[\left( \frac{\sqrt[4]{3}}{5} \right)^{x + 2} = \left( \frac{\sqrt[4]{3}}{5} \right)^{0};\]
\[x + 2 = 0;\]
\[x = - 2;\]
\[Ответ:\ \ x = - 2.\]
\[4)\ 4^{\frac{x - 3}{2}} = 3^{2(x - 3)};\]
\[\left( \sqrt{4} \right)^{x - 3} = \left( 3^{2} \right)^{x - 3};\]
\[2^{x - 3} = 3^{x - 3};\]
\[\frac{2^{x - 3}}{3^{x - 3}} = 1;\]
\[\left( \frac{2}{3} \right)^{x - 3} = \left( \frac{2}{3} \right)^{0};\]
\[x - 3 = 0;\ \]
\[x = 3;\]
\[Ответ:\ \ x = 3.\]