\[\boxed{\mathbf{663}.}\]
\[1)\ (0,1)^{\sqrt{2}};\]
\[Функция\ y = (0,1)^{x}\ убывает:\]
\[y\left( \sqrt{2} \right) < y(0);\]
\[(0,1)^{\sqrt{2}} < (0,1)^{0};\]
\[(0,1)^{\sqrt{2}} < 1.\]
\[2)\ (3,5)^{0,1};\]
\[Функция\ y = (3,5)^{0,1}\ \]
\[возрастает:\]
\[y(0,1) > y(0);\]
\[(3,5)^{0,1} > (3,5)^{0};\]
\[(3,5)^{0,1} > 1.\]
\[3)\ \pi^{- 2,7};\]
\[Функция\ y = \pi^{x}\ возрастает:\]
\[y( - 2,7) < y(0);\]
\[\pi^{- 2,7} < \pi^{0};\]
\[\pi^{- 2,7} < 1.\]
\[4)\ \left( \frac{\sqrt{5}}{5} \right)^{- 1,2};\]
\[\sqrt{5} < 5;\]
\[\frac{\sqrt{5}}{5} < 1;\]
\[Функция\ y = \left( \frac{\sqrt{5}}{5} \right)^{x}\ убывает:\]
\[y( - 1,2) > y(0);\]
\[\left( \frac{\sqrt{5}}{5} \right)^{- 1,2} > \left( \frac{\sqrt{5}}{5} \right)^{0};\]
\[\left( \frac{\sqrt{5}}{5} \right)^{- 1,2} > 1.\]