Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 656

Авторы:
Тип:учебник

Задание 656

\[\boxed{\mathbf{656}.}\]

\[g(p) = \frac{70}{3p + 5} - 2\]

\[1)\ p - цена\ товара \Longrightarrow p \geq 0.\]

\[\frac{70}{3p + 5} - 2 \geq 0\]

\[\frac{70 - 6p - 10}{3p + 5} \geq 0\]

\[\frac{- 6 \cdot (p - 10)}{3 \cdot \left( p + \frac{5}{3} \right)} \geq 0\]

\[Область\ определения:\ \ \lbrack 0;10\rbrack.\]

\[Множество\ значений:\]

\[q(0) = \frac{70}{5} - 2 = 14 - 2 = 12.\]

\[q(10) = \frac{70}{35} - 2 = 2 - 2 = 0.\]

\[\lbrack 0;12\rbrack.\]

\[2)\ Объем\ спроса\ при\]

\[\ цене\ p = 5:\]

\[q(5) = \frac{70}{20} - 2 = 3,5 - 2 = 1,5.\]

\[3)\ q = \frac{70 - 2 \cdot (3p + 5)}{3p + 5};\]

\[q(3p + 5) = 70 - 6p - 10\]

\[3pq + 5q = 60 - 6p\]

\[3pq + 6p = 60 - 5q\]

\[p(3q + 6) = 60 - 5q\]

\[p = \frac{60 - 5q}{3q + 6}.\]

\[Функция,\ обратная\ функции\ \]

\[спроса:\]

\[q(p) = \frac{60 - 5p}{3p + 6}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам