\[\boxed{\mathbf{638}.}\]
\[1)\ y = \sqrt[3]{1 - x};\]
\[Функция\ определена\ при:\]
\[- \infty < x < + \infty;\]
\[Ответ:\ \ D(x) = ( - \infty;\ + \infty).\]
\[2)\ y = \sqrt[6]{2 - x^{2}};\]
\[Функция\ определена\ при:\]
\[2 - x^{2} \geq 0;\]
\[x^{2} \leq 2;\]
\[- \sqrt{2} \leq x \leq \sqrt{2};\]
\[Ответ:\ \ D(x) = \left\lbrack - \sqrt{2};\ \sqrt{2} \right\rbrack.\]
\[3)\ y = \left( 3x^{2} + 1 \right)^{- 2} =\]
\[= \frac{1}{\left( 3x^{2} + 1 \right)^{2}};\]
\[Функция\ определена\ при:\]
\[3x^{2} + 1 \neq 0;\]
\[3x^{2} \neq - 1;\]
\[x^{2} \neq - \frac{1}{3} - при\ любом\ x;\]
\[Ответ:\ \ D(x) = ( - \infty;\ + \infty).\]
\[4)\ y = \sqrt{x^{2} - x - 2};\]
\[Функция\ определена\ при:\]
\[x^{2} - x - 2 \geq 0;\]
\[D = 1^{2} + 4 \bullet 2 =\]
\[= 1 + 8 = 9,\ тогда:\]
\[x_{1} = \frac{1 - 3}{2} = - 1\ \ и\ \]
\[\ x_{2} = \frac{1 + 3}{2} = 2;\]
\[(x + 1)(x - 2) \geq 0;\]
\[x \leq - 1\ \ и\ \ x \geq 2;\]
\[Ответ:\ \ D(x) =\]
\[= ( - \infty;\ - 1\rbrack \cup \lbrack 2;\ + \infty).\]