\[\boxed{\mathbf{632}.}\]
\[1)\ \sqrt{x^{2} - 3x + 2} > x + 3;\]
\[x^{2} - 3x + 2 > x^{2} + 6x + 9;\]
\[- 9x > 7;\]
\[x < - \frac{7}{9};\]
\[Выражение\ имеет\ смысл\ при:\]
\[x^{2} - 3x + 2 \geq 0;\]
\[D = 3^{2} - 4 \bullet 2 = 9 - 8 = 1\]
\[x_{1} = \frac{3 - 1}{2} = 1\ \ и\ \]
\[\ x_{2} = \frac{3 + 1}{2} = 2;\]
\[(x - 1)(x - 2) \geq 0;\]
\[x \leq 1\ \ и\ \ x \geq 2;\]
\[Неравенство\ всегда\ верно\ при:\]
\[x - 3 \leq 0;\]
\[x \leq 3;\]
\[Ответ:\ \ x < - \frac{7}{9}.\]
\[2)\ \sqrt{2x^{2} - 7x - 4} > - x - \frac{1}{4};\]
\[\sqrt{2x^{2} - 7x - 4} > - \left( x + \frac{1}{4} \right);\]
\[2x^{2} - 7x - 4 > x^{2} + \frac{1}{2}x + \frac{1}{16}\text{\ \ \ \ \ }\]
\[| \bullet 16;\]
\[32x^{2} - 112x - 64 > 16x^{2} +\]
\[+ 8x + 1;\]
\[16x^{2} - 120x - 65 > 0;\]
\[D = 120^{2} + 4 \bullet 16 \bullet 65 =\]
\[= 14\ 400 + 4\ 160 =\]
\[= 18\ 560 = 64 \bullet 290\]
\[x = \frac{120 \pm \sqrt{18\ 560}}{2 \bullet 16} =\]
\[= \frac{120 \pm 8\sqrt{290}}{32} = \frac{15 \pm \sqrt{290}}{4};\]
\[\left( x - \frac{15 - \sqrt{290}}{4} \right)\left( x - \frac{15 + \sqrt{290}}{4} \right) > 0;\]
\[x < \frac{15 - \sqrt{290}}{4}\text{\ \ }и\ \]
\[\ x > \frac{15 + \sqrt{290}}{4};\]
\[Выражение\ имеет\ смысл\ при:\]
\[2x^{2} - 7x - 4 \geq 0;\]
\[D = 7^{2} + 4 \bullet 2 \bullet 4 =\]
\[= 49 + 32 = 81\]
\[x_{1} = \frac{7 - 9}{2 \bullet 2} = - \frac{2}{4} = - 0,5;\]
\[x_{2} = \frac{7 + 9}{2 \bullet 2} = \frac{16}{4} = 4;\]
\[(x + 0,5)(x - 4) \geq 0;\]
\[x \leq - 0,5\ \ и\ \ x \geq 4;\]
\[Неравенство\ всегда\ верно\ при:\]
\[- x - \frac{1}{4} \leq 0;\]
\[x + \frac{1}{4} \geq 0;\]
\[x \geq - \frac{1}{4};\]
\[Ответ:\ \ x < \frac{15 - \sqrt{290}}{4};\ \ x \geq 4.\]