\[\boxed{\mathbf{629}.}\]
\[1)\ \sqrt{x + 1} - \sqrt{x} < \sqrt{x - 1};\]
\[\sqrt{x + 1} - \sqrt{x - 1} < \sqrt{x};\]
\[x + 1 - 2\sqrt{(x + 1)(x - 1)} +\]
\[+ x - 1 < x;\]
\[x < 2\sqrt{x^{2} - 1};\]
\[x^{2} < 4\left( x^{2} - 1 \right);\]
\[x^{2} < 4x^{2} - 4;\]
\[- 3x^{2} < - 4;\]
\[x^{2} > \frac{4}{3};\]
\[x < - \frac{2}{\sqrt{3}}\text{\ \ }и\ \ x > \frac{2}{\sqrt{3}};\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 1 \geq 0\ \ \ \Longrightarrow \ \ \ x \geq - 1;\]
\[x - 1 \geq 0\ \ \ \Longrightarrow \ \ \ x \geq 1;\]
\[x \geq 0;\]
\[Ответ:\ \ x > \frac{2}{\sqrt{3}}.\]
\[2)\ \sqrt{x + 3} < \sqrt{7 - x} + \sqrt{10 - x};\]
\[x + 3 < 7 - x +\]
\[+ 2\sqrt{(7 - x)(10 - x)} + 10 - x;\]
\[3x -\]
\[- 14 < 2\sqrt{70 - 7x - 10x + x^{2}};\]
\[9x^{2} - 84x + 196 <\]
\[< 4\left( 70 - 17x + x^{2} \right);\]
\[9x^{2} - 84x + 196 < 280 -\]
\[- 68x + 4x^{2};\]
\[5x^{2} - 16x - 84 < 0;\]
\[D = 16^{2} + 4 \bullet 5 \bullet 84 =\]
\[= 256 + 1680 = 1936\]
\[x_{1} = \frac{16 - 44}{2 \bullet 5} = - \frac{28}{10} = - 2,8;\]
\[x_{2} = \frac{16 + 44}{2 \bullet 5} = \frac{60}{10} = 6;\]
\[(x + 2,8)(x - 6) < 0;\]
\[- 2,8 < x < 6;\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 3 \geq 0\ \ \ \Longrightarrow \ \ \ x \geq - 3;\]
\[7 - x \geq 0\ \ \ \Longrightarrow \ \ x \leq 7;\]
\[10 - x \geq 0\ \ \Longrightarrow \ \ \ x \leq 10;\]
\[Неравенство\ верно\ при:\]
\[3x - 14 \leq 0;\]
\[3x \leq 14;\]
\[x \leq 4\frac{2}{3};\]
\[Ответ:\ \ - 2,8 < x < 6.\]