\[\boxed{\mathbf{620}.}\]
\[1)\ \left\{ \begin{matrix} \sqrt[3]{\frac{y}{x}} - 2\sqrt[3]{\frac{x}{y}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sqrt{x + y} + \sqrt{x - y + 11} = 5 \\ \end{matrix} \right.\ \]
\[заменим\ t = \sqrt[3]{\frac{y}{x}}:\]
\[t - 2 \cdot \frac{1}{t} = 1\]
\[t^{2} - t - 2 = 0\]
\[t_{1} + t_{2} = 1;\ \ \ t_{1} \cdot t_{2} = - 2\]
\[t_{1} = 2;\ \ \ t_{2} = - 1.\]
\[1)\ \ \sqrt[3]{\frac{y}{x}} = 2\]
\[\frac{y}{x} = 8\]
\[y = 8x.\]
\[\sqrt{x + y} + \sqrt{x - y + 11} = 5\]
\[\sqrt{x + 8x} + \sqrt{x - 8x + 11} = 5\]
\[\left( \sqrt{9x} + \sqrt{11 - 7x} \right)^{2} = 25\]
\[9x + 2\sqrt{9x(11 - 7x)} +\]
\[+ 11 - 7x = 25\]
\[2\sqrt{99x - 63x^{2}} = 14 - 2x\ \ \ |\ :2\]
\[\sqrt{99x - 63x^{2}} = 7 - x\]
\[99x - 63x^{2} = (7 - x)^{2}\]
\[99x - 63x^{2} = 49 - 14x + x^{2}\]
\[64x^{2} - 113x + 49 = 0\]
\[D = 12\ 769 - 12\ 544 = 225\]
\[x_{1} = \frac{113 + 15}{128} = 1;\ \ \ \]
\[x_{2} = \frac{113 - 15}{128} = \frac{98}{128} = \frac{49}{64}.\]
\[y_{1} = 8 \cdot 1 = 8;\ \ \]
\[y_{2} = 8 \cdot \frac{49}{64} = \frac{49}{8} = 6\frac{1}{8}.\]
\[2)\ \sqrt[3]{\frac{y}{x}} = - 1\]
\[\frac{y}{x} = - 1\]
\[y = - x.\]
\[\sqrt{x + y} + \sqrt{x - y + 11} = 5\]
\[\sqrt{x - x} + \sqrt{x + x + 11} = 5\]
\[\left( \sqrt{2x + 11} \right)^{2} = 5^{2}\]
\[2x + 11 = 25\]
\[2x = 14\]
\[x = 7.\]
\[y = - x = - 7.\]
\[Ответ:(1;8);\left( \frac{49}{64};6\frac{1}{8} \right);(7; - 7).\]
\[2)\ \left\{ \begin{matrix} \sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}} = \frac{3}{2}\text{\ \ \ } \\ x + y + xy = 9 \\ \end{matrix} \right.\ \]
\[Заменим\ t = \sqrt{\frac{x}{y}}:\]
\[t - \frac{1}{t} = \frac{3}{2}\ \ \ | \cdot 2t\]
\[2t^{2} - 3t - 2 = 0\]
\[D = 9 + 16 = 25\]
\[t_{1} = \frac{3 + 5}{4} = 2;\ \ \]
\[\ t_{2} = \frac{3 - 5}{4} = - \frac{1}{2}.\]
\[1)\ \sqrt{\frac{x}{y}} = 2\]
\[\frac{x}{y} = 4\]
\[x = 4y.\]
\[x + y + xy = 9\]
\[4y + y + 4y^{2} = 9\]
\[4y^{2} + 5y - 9 = 0\]
\[D = 25 + 144 = 169\]
\[y_{1} = \frac{- 5 + 13}{8} = 1;\ \]
\[\ y_{2} = \frac{- 5 - 13}{8} = - \frac{9}{4} = - 2,25.\]
\[x_{1} = 4y = 4 \cdot 1 = 4;\ \]
\[\ x_{2} = 4 \cdot \left( - \frac{9}{4} \right) = - 9.\]
\[2)\ \sqrt{\frac{x}{y}} = - \frac{1}{2}\]
\[\frac{x}{y} = \frac{1}{4}\]
\[y = 4x.\]
\[x + y + xy = 9\]
\[x + 4x + 4x^{2} = 9\]
\[4x^{2} + 5x - 9 = 0\]
\[D = 25 + 144 = 169\]
\[x_{1} = \frac{- 5 - 13}{8} = - \frac{9}{4};\ \ \]
\[x_{2} = \frac{- 5 + 13}{8} = 1.\]
\[y_{1} = 4;\ \ y_{2} = - 9.\]
\[Корни\ не\ подходят\ \]
\[по\ проверке.\]
\[Ответ:(4;1);( - 9; - 2,25).\]