\[\boxed{\mathbf{618}.}\]
\[1)\ \sqrt{x + \sqrt{6x - 9}} +\]
\[+ \sqrt{x - \sqrt{6x - 9}} = \sqrt{6};\]
\[x + \sqrt{6x - 9} +\]
\[+ 02\sqrt{\left( x + \sqrt{6x - 9} \right)\left( x - \sqrt{6x - 9} \right)} +\]
\[+ x - \sqrt{6x - 9} = 6;\]
\[2\sqrt{x^{2} - (6x - 9)} = 6 - 2x;\]
\[\sqrt{x^{2} - 6x + 9} = 3 - x;\]
\[x^{2} - 6x + 9 = 9 - 6x + x^{2};\]
\[0x = 0 - при\ любом\ x.\]
\[Выражение\ имеет\ смысл\ при:\]
\[6x - 9 \geq 0;\]
\[6x \geq 9;\]
\[x \geq 1,5;\]
\[Выражение\ имеет\ смысл\ при:\]
\[x - \sqrt{6x - 9} \geq 0;\]
\[x \geq \sqrt{6x - 9};\]
\[x^{2} \geq 6x - 9;\]
\[x^{2} - 6x + 9 \geq 0;\]
\[(x - 3)^{2} \geq 0 - при\ любом\ x.\]
\[Уравнение\ имеет\ решения\]
\[\ при:\]
\[6 - 2x \geq 0;\]
\[3 - x \geq 0;\]
\[x \leq 3;\]
\[Ответ:\ \ 1,5 \leq x \leq 3.\]
\[2)\ \sqrt{x + \sqrt{x + 11}} +\]
\[+ \sqrt{x - \sqrt{x + 11}} = 4;\]
\[x + \sqrt{x + 11} +\]
\[+ 2\sqrt{\left( x + \sqrt{x + 11} \right)\left( x - \sqrt{x + 11} \right)} +\]
\[+ x - \sqrt{x + 11} = 16;\]
\[2\sqrt{x^{2} - (x + 11)} = 16 - 2x;\]
\[\sqrt{x^{2} - x - 11} = 8 - x;\]
\[x^{2} - x - 11 = 64 - 16x + x^{2};\]
\[15x = 75;\]
\[x = 5;\]
\[Выполним\ проверку:\]
\[\sqrt{5 + \sqrt{5 + 11}} + \sqrt{5 - \sqrt{5 + 11}} =\]
\[= \sqrt{5 + \sqrt{16}} + \sqrt{5 - \sqrt{16}} =\]
\[= \sqrt{9} + \sqrt{1} = 4;\]
\[Ответ:\ \ x = 5.\]