\[\boxed{\mathbf{610}.}\]
\[1)\ \sqrt{5 - x} - \sqrt{5 + x} = 2;\]
\[\left( \sqrt{5 - x} - \sqrt{5 + x} \right)^{2} = 4;\]
\[5 - x - 2\sqrt{(5 - x)(5 + x)} +\]
\[+ 5 + x = 4;\]
\[6 = 2\sqrt{25 - x^{2}};\]
\[3 = \sqrt{25 - x^{2}};\]
\[9 = 25 - x^{2};\]
\[x^{2} = 16;\]
\[x = \pm 4;\]
\[Выполним\ проверку:\]
\[\sqrt{5 - ( - 4)} - \sqrt{5 - 4} =\]
\[= \sqrt{5 + 4} - \sqrt{1} = \sqrt{9} - 1 =\]
\[= 3 - 1 = 2;\]
\[\sqrt{5 - 4} - \sqrt{5 + 4} =\]
\[= \sqrt{1} - \sqrt{9} = 1 - 3 = - 2;\]
\[Ответ:\ \ x = - 4.\]
\[2)\ \sqrt{12 + x} - \sqrt{1 - x} = 1;\]
\[\left( \sqrt{12 + x} - \sqrt{1 - x} \right)^{2} = 1;\]
\[12 + x - 2\sqrt{(12 + x)(1 - x)} +\]
\[+ 1 - x = 1;\]
\[12 = 2\sqrt{12 - 12x + x - x^{2}};\]
\[6 = \sqrt{12 - 11x - x^{2}};\]
\[36 = 12 - 11x - x^{2};\]
\[x^{2} + 11x + 24 = 0;\]
\[D = 11^{2} - 4 \bullet 24 =\]
\[= 121 - 96 = 25\]
\[x_{1} = \frac{- 11 - 5}{2} = - 8;\ \]
\[x_{2} = \frac{- 11 + 5}{2} = - 3.\]
\[Выполним\ проверку:\]
\[\sqrt{12 - 8} - \sqrt{1 - ( - 8)} = \sqrt{4} -\]
\[- \sqrt{1 + 8} = 2 - \sqrt{9} =\]
\[= 2 - 3 = - 1;\]
\[\sqrt{12 - 3} - \sqrt{1 - ( - 3)} = \sqrt{9} -\]
\[- \sqrt{1 + 3} = \sqrt{3} - \sqrt{4} =\]
\[= 3 - 2 = 1.\]
\[Ответ:\ \ x = - 3.\]
\[3)\ \sqrt{x - 2} + \sqrt{x + 6} = 0;\]
\[Первое\ слагаемое:\]
\[x - 2 = 0;\]
\[x = 2;\]
\[Второе\ слагаемое:\]
\[x + 6 = 0;\]
\[x = - 6;\]
\[Ответ:\ \ корней\ нет.\]
\[4)\ \sqrt{x + 7} + \sqrt{x - 2} = 9;\]
\[\left( \sqrt{x + 7} + \sqrt{x - 2} \right)^{2} = 81;\]
\[x + 7 + 2\sqrt{(x + 7)(x - 2)} +\]
\[+ x - 2 = 81;\]
\[2\sqrt{x^{2} - 2x + 7x - 14} =\]
\[= 76 - 2x;\]
\[\sqrt{x^{2} + 5x - 14} = 38 - x;\]
\[x^{2} + 5x - 14 = (38 - x)^{2};\]
\[x^{2} + 5x - 14 = 1444 -\]
\[- 76x + x^{2};\]
\[81x = 1458;\]
\[x = 18.\]
\[Выполним\ проверку:\]
\[\sqrt{18 + 7} + \sqrt{18 - 2} =\]
\[= \sqrt{25} + \sqrt{16} = 5 + 4 = 9.\]
\[Ответ:\ \ x = 18.\]