\[\boxed{\mathbf{601}.}\]
\[1)\ Пусть\ x_{0} - корень;\ \ \]
\[f(x) > g(x) \rightarrow f\left( x_{0} \right) > g\left( x_{0} \right).\]
\[Так\ как\ f\left( x_{0} \right) > 0\ и\]
\[\ g\left( x_{0} \right) > 0 \rightarrow f\left( x_{0} \right) \cdot g\left( x_{0} \right) > 0;\]
\[f\left( x_{0} \right) > g\left( x_{0} \right)\ \ \ |\ :f\left( x_{0} \right) \cdot g\left( x_{0} \right).\]
\[\frac{1}{g\left( x_{0} \right)} > \frac{1}{f\left( x_{0} \right)}\]
\[\frac{1}{f(x)} < \frac{1}{g(x)}.\]
\[2)\ Пусть\ x_{0} - корень;\]
\[\text{\ \ }\frac{1}{f(x)} < \frac{1}{g(x)}.\]
\[\ \frac{1}{f\left( x_{0} \right)} < \frac{1}{g\left( x_{0} \right)}\ \ \ \ | \cdot f\left( x_{0} \right) \cdot g\left( x_{0} \right)\]
\[g\left( x_{0} \right) < f\left( x_{0} \right)\]
\[\text{\ f}(x) > g(x).\]
\[Так\ как\ неравенства\ имеют\ \]
\[одно\ решение,\ то\ они\]
\[\ равносильны.\]
\[Что\ и\ требовалось\ доказать.\]